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Abstract
Scientific visualization is a research area which gives insight into volumetric

data acquired through measurement or simulation. The visualization allows a faster

and more intuitive exploration of the data.

Due to the rapid development in hardware for the measurement and simulation

of scientific data, the size and complexity of data is constantly increasing. This has

the benefit that it is possible to get a more accurate insight into the measured or

simulated phenomena. A drawback of the increasing data size and complexity is the

problem of generating an expressive representation of the data.

Since only certain parts of the data are necessary to make a decision, it is possible

to mask parts of the data along the visualization pipeline to enhance only those parts

which are important in the visualization. For the masking various properties are

extracted from the data which are used to classify a part as important or not. In

general a transfer function is used for this classification process which has to be

designed by the user.

In this thesis three novel approaches are presented which use methods from

information theory and statistics to enhance features from the data in the classification

process that are important for a certain task. With the tools of information theory and

statistics it is possible to extract properties from the data which are able to classify

different materials or tissues in the data better than comparable other approaches.

One approach adaptively extracts statistical properties, i.e. the mean value and

the standard deviation, of the data values in the local neighborhood of each point

in the data set. With these statistical properties it is possible to better distinguish

between different materials in a data set even though the data is very noisy.

The other two approaches in this thesis employ methods from information theory

to extract features from multimodal data sets. Thus it is possible to enhance features

of the data which are either very similar or very dissimilar in both modalities.

Through information theory the variations in the value ranges of both modalities do

not influence the classification of these features.

All three approaches define novel transfer-function spaces which simplify the

design process of a transfer function for the user. Different features of the data, such

as different materials, can be clearly depicted in these spaces. Therefore, it is easier

for a user to design a transfer function which enhances the features of importance

for a certain task.

For each of the new approaches results and comparisons to other existing tech-

niques are shown to highlight the usefulness of the proposed methods. Through the

described research it is shown that information theory and statistics are tools which

are able to extract expressive properties from the data.

In the introduction a broad overview over scientific visualization and the visual-

ization pipeline is given. The classification process is described in more detail. Since

information theory and statistics play an important role for all three approaches, a

brief introduction to these concepts is given as well.



Kurzfassung

Wissenschaftliche Visualisierung ist ein Forschungsgebiet, das Einblick in ge-

messene oder simulierte volumetrischen Daten gibt. Die Visualisierung ermöglicht

eine schnellere und intuitivere Erforschung der Daten.

Durch die rasante Entwicklung der Hardware für die Messung und Simulation

von wissenschaftlichen Daten nimmt die Größe und Komplexität der Daten stän-

dig zu. Dies hat den Vorteil, dass es möglich ist einen genaueren Einblick in die

gemessenen oder simulierten Phänomene zu erhalten. Jedoch wird es zunehmend

schwieriger, eine geeignete Darstellung für diese Daten zu finden.

Da in den meisten Fällen nur bestimmte Teile der Daten erforderlich sind, um

eine Entscheidung zu treffen, können Teile der Daten verworfen werden, welche für

einen bestimmten Anwendungsfall nicht erforderlich sind. Diese Klassifizierung in

wichtige und unwichtige Teile der Daten erfolgt durch eine Transfer-Funktion. Die

Transfer-Funktion beschreibt eine Abbildung von bestimmten Ausprägungen der

Daten auf optische Eigenschaften.

In dieser Arbeit werden drei neue Ansätze vorgestellt, die Techniken aus der

Informationstheorie und Statistik verwenden, um Eigenschaften aus den Daten für

die Klassifizierung zu extrahieren. Durch die Informationstheorie und Statistik ist

es möglich, Eigenschaften zu berechnen, welche verschiedene Materialien in den

Daten besser unterscheidbar machen als bestehende Methoden.

Ein Ansatz extrahiert statistische Eigenschaften - wie den Mittelwert und die

Standardabweichung - aus einer lokalen Umgebung um jeden Punkt in den Daten

auf eine adaptive Weise. Durch die statistischen Eigenschaften ist es möglich, ver-

schiedene Materialen besser zu unterscheiden, auch wenn die Daten sehr verrauscht

sind.

Die beiden anderen Ansätze verwenden Methoden aus der Informationstheorie,

um Merkmale aus multimodalen Daten zu extrahieren. Dadurch können Eigenschaf-

ten in den Daten hervorgehoben werden die entweder in beiden Modalitäten sehr

ähnlich oder sehr unterschiedlich sind. Durch die Informationstheorie hat der Wer-

tebereich der Daten in beiden Modalitäten keinen Einfluss auf die Klassifizierung

dieser Merkmale.

Alle drei in dieser Arbeit vorgestellten Ansätze definieren Transfer-Funktions

Räume die das Design einer Transfer-Funktion für den Benutzer erleichtern. Dies

ist möglich, da unterschiedliche Eigenschaften der Daten - wie etwa verschiedene

Materialien - in diesen Räumen klar unterscheidbar sind. Daher ist es für den Benut-

zer einfacher, bestimmte Teile der Daten hervorzuheben, welche für eine bestimme

Aufgabe benötigt werden.

In der Arbeit werden für jede neue Technik Ergebnisse und Vergleiche zu exis-

tierenden Methoden gezeigt, um den Nutzen der Techniken hervorzuheben. Durch

die Forschung in diesem Bereich wurde bewiesen, dass die Informationstheorie und

Statistik in der Lage ist, aussagekräftige Eigenschaften aus den Daten zu extrahieren.



iv

Die Einleitung bietet einen Überblick über die wissenschaftliche Visualisierung

und die Visualisierung-Pipeline. Die Klassifizierung wird im folgenden näher be-

schrieben. Da Informationstheorie und Statistik eine wichtige Rolle für alle drei

Methoden spielen, wird die Einleitung mit einer kurzen Einführung in diese Theorie

abgeschlossen.
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Nearly every man who develops an idea

works it up to the point where it looks

impossible, and then he gets discouraged.

That’s not the place to become discour-

aged.

— Thomas A. Edison
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The will to win, the desire to succeed, the

urge to reach your full potential... these

are the keys that will unlock the door to

personal excellence.

— ConfuciusCHAPTER
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Introduction

V
ISUALIZATION has the purpose to give an insight into data. Each data contains some infor-

mation and through visualization this information should be presented to a viewer [70].

The visual representation of data has the benefit that it is easier to perceive by humans

than raw data in digits or letters.

The development of hardware to measure or simulate some phenomena rapidly increases the

amount of data which should be investigated by the user. Through the simultaneous development

of graphics hardware for the visualization it would be possible to process this increasing amount

of data. But the visualization is limited by human perception. A visualization which is able to

represent the whole information embedded in the data at once might not be practical, since a user

is not able to process all this information.

In most applications some parts of the data are not necessary to fulfill a certain task. These

parts of the data should be masked in the visualization to reduce the amount of information which

is presented to the user.

In this thesis methods are presented which are able to mask data which are not necessary for

the user. As result a visualization can be generated which is not overloaded with details. Hence

the user can focus on the most important parts of the data.

The control about the parts which are enhanced or masked is still exercised by the user.

However, the methods which are presented in this thesis are able to support this user task and,

hence, make it easier to emphasize the most relevant parts of the data. In contrast to a naive

separation between more and less important parts in the data, information theory and statistics

are used to guide the user in finding the most relevant parts.

The thesis is structured in the following way: In the remaining part of this section an

introduction to scientific visualization is given. With the visualization pipeline all steps are

explained which are necessary to generate a visualization based on some data. The methods in

this thesis are tools to improve the classification step in the visualization pipeline. Therefore, the

classification step is described in more detail. It is depicted in which level of classification the

introduced methods are applied. The introduction is completed by a brief survey of common

concepts in information theory.

In Chapters 2, 3, and 4 the different methods for an information-based classification are

explained. These novel methods show ways to use the well-known information theory and

statistics to improve the classification process. All three methods were designed to provide an

intuitive user interface which supports the user in extracting the most relevant parts of the data.

1



Chapter 1 Introduction 2

Each aspect and all algorithms of the methods are explained in detail. Results in each section

show the usefulness of each individual approach.

The method in Chapter 2 describes a technique which investigates the local neighborhood

around each point. Statistics is used to extract some information about the properties of the data

in this area. With this method it is easier to distinguish between different objects or materials,

represented in the data.

Chapter 3 describes a technique which is able to enhance parts of the data with a high

information content. For this reason the global distribution of data values is used as reference for

the estimation of the information content at a single point inside the data.

The last method - which is described in Chapter 4 - extracts the structure of objects in the

data and uses this information to find similarities between them. For the measurement of the

similarity, information theory is used. With this method it is possible to enhance structures which

represent stable object surfaces.

In Chapter 5 a summary and conclusion is given. The main contribution of the thesis is

depicted as well as limitations with the introduced methods are described.

1.1 Scientific Visualization

Over the last decades visualization has become an important part of many domains. Whenever

data has to be investigated, a visualization of the data is useful to understand the data faster and in

a more intuitive way. This starts with simple graphs, such as election polls, and ends with highly

complex visualizations of multidimensional data, such as a weather forecast.

Due to the variety of different visualization techniques based on different applications and

data sources, the field of visualization was split into two branches: information visualization and

scientific visualization [21]. The separation is defined by the characteristics of the underlying

data which is visualized. Information visualization describes the field of visualizing high dimen-

sional data with no inherent spatial reference. Examples for sources of such data are files, text,

relationships in the internet, or polls [3].

Scientific visualization focuses on the visualization of data which has an inherent spatial

reference. The name scientific originates from the fact that data with inherent spatial reference

is usually acquired by scientific experiments or measurements. The data describes phenomena

arising from medicine, biology, metrology, architecture, etc. In most cases the data is embedded

in a three dimensional (3D) space. Each point in the 3D space represents one or more properties

of the measurement or simulation at its spatial position.

An example for scientific visualization is Computed Tomography (CT) or Magnetic Resonance
Imaging (MRI) in medicine. These are two techniques to get a non-invasive insight into the

human body. The resulting data of CT and MRI represents physical properties at each 3D position

inside a human body. A visualization of the data should be able to show all important parts of the

body for a certain medical investigation.

The main difference in the visualization technique between information and scientific visu-

alization is the inherent spatial reference. While the data in information visualization can be

arranged in any useful way, the data in scientific visualization has to be arranged according to

their inherent spatial reference. By maintaining the spatial reference in the visualization, the
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result is easier to interpret by a user. The drawback with the inherent spatial reference is that

scientific visualization has to deal with occlusions since it is possible that some areas of the data

set are occluded by other parts.

The techniques which are described in this thesis are all used for scientific visualization.

Therefore, the term visualization is used as a synonym for scientific visualization in the following.

Nevertheless, information and scientific visualization share many techniques and also the methods

in this thesis might be useful for some applications in information visualization but this is out of

scope of this thesis.

1.2 The Visualization Pipeline

The starting point for every visualization is the data which has to be visualized. The result of

a visualization is an image which represents the underlying data from a certain viewpoint and

additional parameter settings. A set of images from different perspectives and with different

parameter settings should provide enough insight into the data to result in a correct interpretation.

All the steps which are necessary to generate an image from the data can be described by

the visualization pipeline of Haber and McNabb [25]. Figure 1.1 illustrates the pipeline. It

starts with data acquisition on the left side. The acquisition process can be either a simulation

or measurement. The result of the data acquisition is raw data. The raw data stores for each

point in 3D space its properties. In many cases it is only a single value per position. This is the

case, e.g., in CT where a single value at each point represents the physical density of the scanned

material. If the underlying phenomena are time-varying then each point represents a value for

each time step. It is also common that a simulation or measurement is done several times with

different modalities or settings. In this case each point in space represents the different values

for each simulation or measurement. Another possibility is that a measurement or simulation is

represented by a vector at each position.

These differences in the type of the data can be formalized by the terms scalar field and

vector field. A scalar field holds a scalar, i.e., a single value, for each point in the field. A scalar

field f can also be expressed by:
f : R3→ R (1.1)

In contrast to that a vector field v represents an N-dimensional vector at each position:

v : R3→ R
N (1.2)

In the literature the term vector field is only used if each point in the data represents a real vector -

such as the direction of a flow - and not just a set of different properties. The visualization of such

data is often referred to as flow visualization. Multimodal data or time-varying data is usually

represented by several scalar fields for each modality or time step. In this thesis we concentrate

on the visualization of scalar fields from single or multiple modalities.

Depending on the acquisition process it might happen that the raw data for example is too

noisy or too large for the further processing steps. In such a case the raw data is filtered. After

the filtering the data is called visualization data. Typical filtering techniques which are used in
this processing step are smoothing - to reduce the noise - or downsampling - to reduce the size
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of the data. In Figure 1.1 the filtering can be seen as second processing step in the visualization

pipeline.

The visualization data still represents the original properties of the data, such as physical

density in the case of CT. These properties cannot be displayed directly on the screen since

they do not match any display scheme in general. Therefore, the visualization data has to be

converted to something which can be visually represented. This process is known as classification

or mapping. The output of the classification is a visual abstraction of the data as depicted in

Figure 1.1.

During the classification process it is possible to enhance or mask parts of the data. For most

applications this is an important step since the data is usually very dense and many parts are

occluded. After the classification the most important parts for a certain application should be

visible. Usually the classification is based on a combination of automatically retrieved features

from the data and user interaction.

data process
flow interaction

data
acquisition

raw
data

filtering

visualization
data

classification

visual
abstraction

rendering

visualization
output

Figure 1.1: The visualization pipeline describes all steps from data acquisition until the final

visualization output, i.e., an image.

The final step in the visualization pipeline is rendering. It results in a visualization output, i.e.,
an image which shows the visual abstraction from a certain perspective. Rendering techniques

are divided into two groups [14]:

• Surface rendering

• Volume rendering

– Object-order rendering
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– Image-order rendering

For surface rendering a surface is extracted from the data before it is rendered. This extraction is

done in the classification step and results in a surface model as visual abstraction. The surface

model represents a surface of the object for given parameters, such as a certain density value in

the case of CT. After the extraction of a surface the rendering is trivial since modern graphics

hardware is optimized to render such surfaces. A well-known technique for surface rendering

is called marching cubes [53]. It is a technique which generates triangles which represent the

surface for a certain threshold.

The second rendering technique is volume rendering. For this rendering technique it is not

necessary to generate an intermediate representation of the data, such as the surface model. The

image is directly generated from the volumetric data. Therefore this technique is also referred to as

direct volume rendering (DVR). All DVR techniques are classified as object-order or image-order

techniques [79]. Figure 1.2 illustrates the two different rendering types for volume rendering.

In object-order rendering on the left side each volume element (voxel) of the volumetric data

is projected onto the image plane. The final color of a pixel on the screen is then calculated by

a blending of all voxels which are projected to this pixel. A well-known representative of this

technique is splatting introduced by Westover [79].

image plane

volumetric data

pixel

voxel

image plane

volumetric data

pixel

voxel

object-order rendering image-order rendering

Figure 1.2: Different rendering orders for volume rendering.

The image-order techniques start from each pixel at the image plane. A ray is shot along

the view direction into the 3D scene. On the right side of Figure 1.2 this process is illustrated.

If the ray hits the object a color is calculated for the pixel by accumulating the colors of the

voxels along the ray. This technique is also known as volume raycasting and was introduced

by Levoy [49]. Due to the development of graphics hardware, raycasting can be implemented

efficiently on the graphics processing unit (GPU). Therefore, raycasting became the state-of-art

technique for many visualization applications.
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The methods presented in this thesis are able to improve the classification process for certain

applications. Raycasting is the technique of choice since it delivers better results than other

rendering techniques while it is still fast on current graphics hardware. Therefore, a description

of different rendering techniques is out of scope of this thesis. A detailed overview over different

rendering techniques is given by Elvins [14].

After the rendering process the whole visualization pipeline has been traversed. The result of

the visualization pipeline is an image which visually represents the raw data. In Figure 1.1 it can

be seen that the user is able to interact with all processing steps of the pipeline. This is necessary

because a single image generated with a set of different settings is in most cases not sufficient to

understand the complexity of the underlying data.

The next section covers classification in more detail. It will be explained how the methods

described in this thesis are integrated into the visualization pipeline. The goal of classification is

to enhance parts of the data which are important for a certain task and mask all other parts. In

Chapters 2, 3, and 4 novel techniques are described which are able to provide this classification

goal.

1.3 Classification

In the classification step the visualization data is converted into a visual abstraction as shown in

Figure 1.1. The classification has two purposes. One purpose is the mapping of the visualization

data to optical properties which can be used in the rendering process. In most cases the optical

properties are color and opacity. After the classification each voxel is represented by optical

properties. This abstraction can then be used by the rendering algorithm, such as raycasting, to

generate an image.

A second purpose of classification is the segmentation of the data. In most cases the data in

scientific visualization is very dense. This means that many areas inside the volumetric data are

occluded by other areas after the projection to an image in the rendering step. As an example, we

can consider the volumetric data of a medical CT scan of a human head. In this case the bones

are occluded by muscle tissue and skin. The bones would be occluded all the time no matter how

the viewing direction is changed. The result on the left side of Figure 1.3 shows this case. If

someone is interested in the bones the classification process can be adapted to mask the tissues

which occlude the bones in the final projection. The result after such a classification is shown on

the right side of Figure 1.3.

In the literature the classification is often formalized with the concept of a transfer function [15,

34]. A transfer function defines the mapping from features of the data to optical properties. By

modifying the transfer function some parts of the data can be enhanced or masked. For the

example in Figure 1.3 two different transfer functions were used to show the skin in one result

image and the bones in the other.

The visualization pipeline in Figure 1.1 of the previous section indicates that the classification

process is a separate step before rendering. This is only true when pre-classification is used. In this

case each voxel of the visualization data is classified with optical properties before the rendering

is applied. In the rendering process the optical properties of a sample point are calculated by

interpolating between optical properties of the surrounding voxels. For the methods in this thesis
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Figure 1.3: Influence of the classification on the result image of the visualization. On the left side

the skin is occluding all inner tissues. In the visualization on the right side all tissues except the

bones are masked.

post-classification is used. In post-classification the features at a sample point are calculated by

interpolating the visualization data first. Based on this interpolated values optical properties are

assigned to the sample point.

In contrast to pre-classification, post-classification needs more processing power during the

rendering process but it results in smoother visualizations since less information is lost in the

interpolation between the original data values. With modern graphics hardware the processing

power is high enough to use post-classification without any limitations in the rendering speed.

Even though classification is often directly integrated into the rendering process, it can be

seen as separate processing step in the visualization pipeline. Pre- and post-classification only

differ in some implementation details. For the further thesis this difference is not important.

Therefore we will only use the term classification to refer to pre- and post-classification.

In classification the assignment of optical properties is dependent on features extracted from

the data. A feature is, e.g., the data value at the voxel position which should be classified. In

the example in Figure 1.3 the data value is used as feature. In this case it is possible to classify

bones based on this feature alone. In many applications a single feature is not good enough for

the classification because by itself it is not distinctive to enhance certain parts of the data. In such

a case other features or additional features of the data are used for the classification.

In this thesis the features which are used for the classification are differentiated by the area

which is involved in their extraction. Figure 1.4 shows an overview on different possibilities

for the extraction of features. The red dot in the different levels of classification symbolizes the

sample point which has to be classified.

If the classification is based only on a single location then just the original data value is used

to assign optical properties to a voxel. A more sophisticated classification uses features extracted

from the local neighborhood around the voxel. For some applications it is useful to calculate
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single location

local neighborhood

global properties

object structure

classification

visualization
data

visual
abstraction

Figure 1.4: Different levels of classifying visualization data at a certain location (red dot).

The complexity increases with the size and intricacy of the region which is considered for

classification.

features based on global properties. The final possibility for extracting features is based on global

structures of the object represented in the data.

Based on the features which are extracted by these different methods a transfer function can

be designed which assigns optical properties to single sample points. In the methods described

in this thesis we show how different features are extracted and how these features are used to

improve the classification process for certain applications in scientific visualization. But first, the

differences of the extraction of features at various levels are highlighted.
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1.3.1 Single Location

The most trivial classification method is based only on the values at the position which has to

be classified. In the simplest case this is a single value if only a single volume is represented by

the data. In the case of multimodal data and time-varying data more values are involved in the

classification.

The classification based only on the local value was first introduced by Levoy [49]. The

transfer function for this mapping assigns optical properties to each value in the whole value

range of the data. The same optical properties can be assigned to different data values. It is also

possible to mask certain data values by assigning optical properties to them which are not visible

in the final rendering. This can be achieved, e.g., by setting the opacity to zero.

The design of a transfer function is the process of defining and changing optical properties for

different data values until the desired rendering result is generated. In the example with the bones

from Figure 1.3 this would mean to set the opacity for all data values which do not represent

bones to zero.

The design of a transfer function is done by the user of a visualization application. Usually

the design is a trial-and-error process which needs experience. For every data set the transfer

function has to be designed anew or at least adapted from a preset. Different hints about the

characteristics of the data can support the design process. For example the frequency distribution

of the data values can help to identify value ranges for soft tissues or bones in the case of CT.

This is possible because more voxel belong to soft tissue or bones than to any other tissue.

Since the classification based on the value at a single location is simple, it is still widely used.

It is best suited for data which contains materials with distinct data value ranges. In this case

it is possible to assign different optical properties for each material based on the data value. If

the data value ranges of different materials overlap, this method is not sufficient to distinctively

classify different materials. Hence more features have to be extracted from the data to make a

distinctive classification possible.

1.3.2 Local Neighborhood

If it is not possible to get a good classification based only on the data values, it is possible to

extract additional features from the local neighborhood around the sample point which should be

classified. This should result in a set of features which are distinctive for different materials and,

hence, different optical properties can be assigned to each material.

Kniss et al. [40] employed the gradient magnitude as additional feature for the classification.

To estimate the gradient magnitude the neighboring voxels are used. The gradient magnitude is

larger in areas with high variations of the data values. Such areas are interfaces between materials

where the values change rapidly. Therefore, the classification based on this additional feature is

able to distinguish interfaces between materials from material interiors.

For many applications the interfaces between materials are of interest. Hence many methods

were developed which are able to classify these interfaces. As additional features, e.g., curva-

ture [29] or data values along the gradient direction [54, 72] are used. Through these additional

features the transfer function gets more complicated since it has more input values. Transfer



Chapter 1 Introduction 10

functions which use additional features are also known as multi-dimensional transfer functions.

The additional features define a two- or higher-dimensional transfer-function space.

If the interior of objects is of interest then it is possible to extract features which are able to

depict salient regions of the same material. Lundstrom et al. [56] introduced a method which

classifies different materials by their local histograms. Local histograms are more stable features

to classify different materials than single data values. Caban and Rheingans [7] use textural

properties of a local neighborhood to assign optical properties to different materials.

The extraction of additional features in a local neighborhood is more complex and needs

additional processing time. The transfer-function design also gets more complicated since there

are more degrees-of-freedom. On the other hand the classification of the data can be improved by

the additional features. Different optical properties can be assigned to different materials even

though this is not possible when the data value is used alone.

In Chapter 2 a method is introduced which extracts additional features in a local neighborhood.

The transfer-function space is defined in a way to simplify the transfer-function design process.

1.3.3 Global Properties

In contrast to features which are extracted from the local neighborhood it is also possible to use

global properties for the classification. With global properties it is possible to extract information

about the general content in the data set. An example for a global property is the probability of

the occurrence of a certain data value in the whole data set. Such information together with the

local data value can be used to extract features for the classification.

Kniss et al. [43] introduced a classification method based on statistics. In this case the

probability of the occurrence of a certain material in the data set was used as global property.

Based on this estimation the membership of a value to one of the materials is calculated.

The benefit of global properties in contrast to features extracted from a local neighborhood is

their robustness. Noise or other artifacts have only a low impact on global properties while they

might have a high impact in a local neighborhood.

In Chapter 3 a technique is described which uses global properties for the classification of

multimodal data. The global properties are used to estimate the information content for each

combination of values. Through this it is possible to enhance parts with higher information

content.

1.3.4 Object Structure

The classification based on features extracted from the object structure is the most sophisticated

technique. This classification technique is useful if the structure of the object is of interest.

Hadwiger et al. [26] developed a region growing algorithm to detect structures of different

sizes in the data. The size of the structure is the feature which is used for the classification with

optical properties. Correa and Ma [12] use a multi-scale approach to detect features of different

sizes.

Isosurfaces are another structural feature which can be extracted from the data. Tenginakai et

al. [68, 69] introduced a method to extract salient isosurfaces. In their work statistical properties

for isosurfaces are calculated and used as features for the classification. Carr et al. [9] use the
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contour tree of isosurfaces to classify object structures. In the work of Khoury and Wender [35]

the fractal dimension of isosurfaces is used as feature. Bruckner and Möller [6] compared

different isosurfaces with each other to estimate their similarity. The similarity was then used as

feature to classify stable isosurfaces.

In Chapter 4 a method is introduced which uses the similarity of isosurfaces in multimodal

data to classify stable surfaces of both modalities. Thus it is possible to enhance or mask features

which are very similar in both modalities.

With the different features extracted from the data it is possible to assign optical properties to

different materials in the data. The classification technique which is used for the visualization

depends on the data and the application.

Nevertheless how good a classification method is, some information gets lost in the classifica-

tion process. In each step of the visualization pipeline some information is typically lost. This

is in many cases unavoidable since it is rarely possible to visualize all parts of the raw data at

once. The goal throughout the visualization pipeline is to discard only information which is not

necessary to fulfill a certain task based on the data.

The naive approach for the classification to prevent loss of important information is to let the

user control what will be discarded. For data sets which represent simple objects this is possible

but for more complex data sets it is difficult for the user to modify the classification in a way to

discard only information which is not necessary for a certain task.

In this thesis we introduce methods for the classification of visualization data which are based

on statistical properties and information theory. Through this the user is supported in the task

of modifying the classification to discard less important parts of the data and enhance the most

important ones.

Since information theory is an important tool for the methods in this thesis, the next section

gives a short introduction to it. It is also shown for which other aspects than classification

information theory can be used in the scope of scientific visualization.

1.4 Information Theory in Visualization

Information theory was introduced in the late 1940s by Shannon [65]. Initially it was developed

for the application of signal processing. Figure 1.5 shows the original setup which was used to

formalize information theory. A sender sends a signal over a noisy channel to a receiver. With

the introduction of information theory it was the first time possible to calculate the amount of

information which can be transmitted without the loss of any information over a given channel.

Since then information theory was employed in many research fields such as electrical

engineering, mathematics, computer science, physics, economics and arts [13]. Applications

which are based on information theory are, e.g., data compression and image registration. In

data compression the loss of information can be quantified by information theory for a certain

compression rate. Hence, the compression rate can be chosen according to the maximum possible

loss of information. In the field of image processing, image registration is one task which uses

information theory. Two images are optimally registered to each other when one image contains

the maximum amount of information about the other image. The field of image processing
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Figure 1.5: Information theory was originally introduced by Shannon [65] for signal processing.

inspired many applications in visualization which use information theory. Wang and Shen [74]

depict the increasing influence of information theory in visualization.

The analogy between the utilization of information theory in visualization in comparison

to usage in its original field of signal processing can be explained through the visualization

pipeline. In Section 1.2 the visualization pipeline was explained. According to the illustration of

signal processing in Figure 1.5 the raw data can be seen as sender and the visualization output as

receiver. All the processing steps between are part of the transmission channel. In general the

size and dimension of the raw data is too high to generate a visualization output which represents

every detail of the data. Hence some data gets lost during the different processing steps along the

visualization pipeline. With information theory it is possible to minimize the loss of information

along the visualization pipeline by discarding data which is not necessary for a certain task [10].

The filtering step along the visualization pipeline is necessary especially when the raw data is

noisy or contains some other artifacts. The goal is to preserve the shape and structure of the data

as much as possible while the noise or artifacts are eliminated. In practice it is not possible to

eliminate all noise without modifying the structure of the data. Information theory can be used

in this case to measure the amount of information loss during the filtering. The filter can then

be adjusted in a way to preserve the structure of the data up to a certain level. An example for a

filtering method based on information theory is the work of Cheng et al. [11]. In this work the

data is converted into a so called fuzzy domain. In this domain data can be discarded depending

on its fuzziness.

The classification step is the processing step which is able to discard most of the data.

Therefore, it is especially important to keep the information loss in this step as small as possible.

In flow visualization, e.g., data is very dense and therefore it is often represented by streamlines.

In the classification step the number and positions of streamlines are generated. Xu et al. [80]

presented a method which employs information theory for the distribution of streamlines, based

on the data which represents the flow field. Another classification task which uses information

theory is the identification of representative isosurfaces for an object in the data. Bruckner and
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Möller [6] introduced a measurement for the similarity of two isosurfaces based on information

theory. The similarity is used to detect isosurfaces which best represent the structure of an object.

Laidlaw et al. [45] apply Bayes’ theorem on a small neighborhood around a sample point to

classify mixed materials. This method can be used to detect interfaces between different objects.

In the rendering step some information gets lost through the mapping from 3D to 2D.

Nevertheless the loss of information can be minimized with different techniques. The viewpoint

is one criterion which highly influences the amount of information which can be perceived in

the visualization output. In most visualization applications the user can interactively manipulate

the viewpoint. Bordoloi and Shen [4] introduced a information-theoretic technique which

automatically selects a viewpoint that preserves the maximum information in the rendering step.

In some applications the data is represented in different resolutions. A higher resolution is able

to represent more details in contrast to a lower resolution. Each region of the volume should be

represented by a resolution which is sufficient enough to faithfully represent the data. Wang and

Shen [73] developed a method which automatically selects the best resolution for each region of

the volume. The automatic selection is based on information theory.

In this thesis three different techniques are described which employ information theory and

its methods in the classification step to minimize the information loss (Chapters 2, 3, and 4).

Since all three methods use techniques which are related to information theory the most important

concepts are briefly described in the remaining part of this section.

1.4.1 Concepts of Information Theory

Information theory includes all methods which are used to quantify information. As mentioned

earlier this quantification became important for many research fields after it was introduced by

Shannon [65].

The basis for the quantification of information is the probability of the occurrence of a certain

signal. If we consider for example the English language as source then each letter is a signal with

a certain probability of occurrence. The letter e occurs more often than the letter x. Hence the
quantity of information incorporated with the letter e is lower in comparison to the letter x. The
reason is that a signal which appears less likely reveals more information. In the example with

letters, an x appears less often in a word or text. Therefore, a better prediction about the whole

message can be made by receiving an x instead of an e.
This simple example depicts the basic concept behind information theory. Since probabilities

for the occurrence of signals is the basis for the quantification of information, statistics is a

fundamental tool for all calculations of quantities in information theory. From the point of view

of statistics each signal can be seen as a random variable X . In the discrete case X can have n
different conditions xi. Each of these conditions occur with a certain probability p(xi). If the
random variable can be described by a continuous function then it can have infinite different

conditions x with a probability of p(x) for each condition x. On the left side of Figure 1.6 an

example for the probability density function (pdf) p(x) of a random variable X is shown.



Chapter 1 Introduction 14

x

p
(x

)

x

p
(x

,y
)

x

p
(x

,y
)

y

Figure 1.6: The figure shows the probability density function p(x) for a random variable X on

the left and the joint probability density function p(x,y) for the co-occurrence of two random

variables X and Y on the right.

The pdf has the property that the sum of probabilities for all conditions of x must be one in

total:

∫
X

p(x) dx = 1 (1.3)

In scientific visualization every feature of the data can be seen as a random variable. The data

value itself, e.g., can be used as random variable. In general the pdf for a certain feature which is

used as a random variable is not known. In this case the pdf can be estimated by a normalized

histogram. For the generation of the histogram the value range of a feature is subdivided into a

certain number of bins. Each bin is increased by one for a value within its borders. Finally the

counts of each bin are divided by the total number of points. This results in a discrete probability

function p(x) for a feature X which can be used for further calculations.

The probability p(x) of a random variable X can be used directly to calculate the self

information I(x):

I(x) =−log(p(x)) (1.4)

If the logarithm in the equation is to the base of two, the equation returns the self information

measured in bits. The self information quantifies the storage which is necessary to encode the

signal x. The lower the probability p(x) the higher the self information I(x) and the higher the
storage which is necessary for encoding x.

In information theory many concepts rely not only on the information of a single signal itself

but on the information which is included in the combination of two random variables X and Y .
Such concepts are used when, e.g., the mutual information of two signals should be calculated.

For these calculations it is necessary to know the joint pdf p(x,y) of the co-occurrence of x and y.
On the right side of Figure 1.6 an example of a joint pdf for two random variables X and Y is

shown.
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Two random variables are called independent when the joint probability p(x,y) is the product
of the individual probabilities p(x) ∗ p(y) for all x of X and y of Y . This is the case if the

occurrence of one signal x has nothing to do with the occurrence of the other signal y.
The joint information I(x,y) for the co-occurrence of two signals x and y can be calculated in

the same way as the self information in Equation 1.4. Instead of p(x) the joint probability p(x,y)
is used.

With these theoretical concepts of self information and joint information together with

the probabilities of the occurrence of signals, several information-theoretic quantities can be

calculated. The most important ones are briefly introduced in the following.

Entropy

The entropy H(X) is a measure for the average information content of a random variable X . The

entropy of a continuous random variable X can be calculated by the following equation:

H(X) = E(I(X)) =
∫

X
p(x) I(x) dx (1.5)

E is the expected value and I is the information content. The entropy can equally be expressed

by the integral of the probability-weighted information content.

In practice the entropy can be used to calculate the encoding length for the whole message.

The range of the random variable X is the whole message in this case. If one particular signal x
has the probability of 1 and all other signals have a probability of 0 then the entropy is 0. This

case needs the lowest encoding length for the whole message. The other extreme is a random

variable X where each signal x occurs with exactly the same probability. In this case the entropy

is at a maximum and the whole message needs the highest encoding length.

Joint Entropy

The joint entropy H(X ,Y ) expresses the average information content for the co-occurrence of two

random variables X and Y . Similar to the entropy it can be formalized be the following equation:

H(X ,Y ) =−
∫

Y

∫
X

p(x,y) log(p(x,y)) dxdy (1.6)

p(x,y) is the joint probability for the co-occurrence of x and y. The two extrema for the joint

entropy are also similar to the entropy. The joint entropy is maximal when all combinations of

signals x and y occur with the same probability. The joint entropy is zero if only one combination

of signals occurs.

Conditional Entropy

In information theory the conditional entropy H(Y |X) expresses the remaining information, i.e.

uncertainty, of a random variable Y while the other random variable X is already given. The

conditional entropy can be expressed in the following way:

H(Y |X) =−
∫

Y

∫
X

p(x,y) log
p(x)

p(x,y)
dxdy (1.7)
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In other words the conditional entropy is low if the random variable Y contains similar

information as the random variable X . In this case a lot of information is already known about

the random variable Y by knowing the random variable X . If the conditional entropy is high the

two random variables differ much more from each other. By knowing the random variable X less

information about random variable Y is known. If both random variables are independent from

each other then the conditional entropy H(Y |X) is equal to the entropy H(Y ).

Mutual Information

The mutual information I(X ,Y ) of two random variables X and Y is a quantity to measure the

mutual dependency between the variables. It is the reduction in the uncertainty of one random

variable due to the knowledge of the other one [13]. The mutual information can be formalized

by:

I(X ,Y ) =
∫

Y

∫
X

p(x,y) log
(

p(x,y)
p(x) p(y)

)
dxdy (1.8)

An extreme of the mutual information occurs when both random variables are independent

from each other, i.e., p(x,y) = p(x)∗ p(y). In this case the knowledge of one random variable

does not give any information about the other random variable. Hence the mutual information

is zero. The other extreme occurs when both random variables are identical. In this case all

information about one random variable is known if the other random variable is given.

Instead of Equation 1.8 the mutual information can also be expressed by the entropies, joint

entropy, and conditional entropies of random variable X and Y :

I(X ,Y ) = H(X)−H(X |Y ) (1.9)

= H(Y )−H(Y |X) (1.10)

= H(X)+H(Y )−H(X ,Y ) (1.11)

= H(X ,Y )−H(X |Y )−H(Y |X) (1.12)

Figure 1.7 illustrates the connection between the quantities of information theory. The two

circles illustrate the individual entropies H(X) and H(Y ). The intersection of both circles is

the mutual information I(X ,Y ). The combination of both circles represents the joint entropy

H(X ,Y ). The conditional entropies H(Y |X) and H(X |Y ) are the individual entropies without the
intersecting part from the other random variable.

The introduced concepts of information theory are used in the following chapters to calculate

features for the classification of volumetric data. It is shown that information theory is a useful

tool to enhance features of interest while masking parts of the data which are less important for

the visualization. First of all a method is introduced in the next chapter which uses the statistical

basis of information theory to classify different materials of a data set.
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A
S depicted in Chapter 1 classification is a major issue in volume visualization. The goal

of classification is to enhance different materials or objects which are important for

further analysis of the data. Transfer functions have been proven to be a powerful

tool for classification. Nevertheless, in most cases it is a non-trivial task to find a good transfer

function which is able to achieve the desired classification.

A transfer function (TF) is a general concept. Concrete implementations use one or more

features, derived from the data, to define a transfer-function space. A transfer function is then

designed in this space. How easily different materials can be distinguished by the transfer function,

depends on the data set as well as on the used features in the definition of the transfer-function

space.

Noise in the measured data is a typical problem, which complicates the classification process.

The most frequently observed noise in measured data is Gaussian white noise. White noise has a

mean value of zero and a symmetric variance. For different materials in a volume data set, the

noise causes variations of the intensity values around an average value. Therefore, it is difficult to

assign intensity values of sample points to a certain material, especially if average values of other

materials are close by. This intermixing of materials in the intensity space cannot be resolved in

the transfer-function space when only local features, such as the data values, are used to define

the transfer-function space.

In this chapter a method is presented which considers a local neighborhood around each

sample point to derive features for the transfer-function space. By this, we are able to estimate

the distribution of noise around the average value of a material. The statistical properties of

this distribution are used to describe the material at a certain sample position. Since different

materials can be distinguished by their distributions of intensity values, we are able to separate

them.

For the estimation of the statistical properties, we employ an adaptive growing approach

at each sample point. The extent of the growing is dependent on the local neighborhood of a

sample point. The estimated features are used to define the statistical transfer-function space.

18
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Sample points from separate materials can be seen as separate clusters in this space. We introduce

special transfer-function regions which are adapted for this space to design a transfer function.

Furthermore, we demonstrate how the statistical properties can be used to steer visual properties

such as shading. This results in higher quality visualizations, especially for noisy data.

We use the new statistical transfer-function space to generate images for medical MRI and

industrial CT data. We show for these data sets, that our method classifies different materials

better than other state-of-the-art transfer-function spaces.

2.1 Related Work

The method presented in this chapter spans several research fields. Since we are dealing with noise

in the data, the analysis of noise in image processing is related to this approach. The growing of

regions around each sample point is similar to the scale-space analysis where data is analyzed on

different scales. In this chapter we introduce a new transfer-function space. Therefore, most of

the related work is dedicated to other transfer-function spaces.

Image Processing. Noise in data is a well investigated field in image processing. For this

approach we assume the noise in the data to be Gaussian white noise. This is specifically

true for CT data sets [47, 75]. For other data sets, the Gaussian distribution is at least a good

approximation of the noise distribution. In MRI, e.g., the real distribution is a Rician distribution,

but for a low signal-to-noise ratio the difference to a Gaussian distribution is very small [24].

Scale-Space Analysis. Early works, such as Lindeberg [50], analyzed images on different

scales. Over the years, different scale-spaces were investigated. The most common scale space is

the linear scale space, which is generated by progressive Gaussian smoothing. In this scale-space

Lindeberg [51] introduced a technique for feature detection and automatic scale selection. Due

to the complexity of the scale-space generation for volume data, alternatives, such as Laplacian

pyramids [23] or Wavelet transforms [58], were developed for an easier and faster representation

of different scales. A method to improve the classification of features, based on a pyramid

representation, was introduced by Lum et al. [55]. In contrast to scale-space analysis, our method

uses different scales for each sample point because the growing is terminated depending on local

features of the neighborhood region.

Transfer Function Spaces. In an early work, Levoy [49] used the data value alone to define

a transfer function space. Kniss et al. [40] employed the data value and the gradient magnitude for

the classification of different materials and borders between them. Since they only consider single

data values and a very small neighborhood for the gradient magnitude, this technique is not well

suited for the classification of noisy data. Hladůvka et al. [29] proposed curvature as an additional

property for the classification. With this method special features, like ridges and valleys, could be

extracted. An extension to multi-dimensional transfer functions was introduced by Roettger et

al. [63]. The method includes spatial information in the transfer-function space. They simplified

the transfer-function design-process by using the spatial information to color the transfer-function

space. However, for noisy data different materials overlap in this transfer-function space.

In the work of Lum and Ma [54], a larger region is considered for the definition of the

transfer-function space. Besides the data value at a sample point, a data value along the gradient

direction is used as well. In data sets with sharp transitions, such as CT data, this technique can be
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used to highlight border areas. An extension to this method was introduced by Šereda et al. [72]

named LH histograms. This method looks for homogeneous regions along both directions of the

gradient streamline. The detected low and high data values are used to define the transfer-function

space. This method provides good results for data sets with little noise. For noisy data sets, values

in homogeneous regions have a high variance. Therefore, the clusters representing homogeneous

regions are getting larger and overlap each other in the LH histogram space.

A method which also uses a larger neighborhood for the classification was presented by

Hadwiger et al. [26]. They use region growing to detect features of different sizes in industrial

CT data. In a 3D transfer-function space these different features can be classified. In the work of

Correa and Ma [12], a multi-scale approach is used to detect the size of features in a data set. The

feature size is then used as an additional parameter for the definition of a transfer function. In

both approaches the shape of a feature in the data set is the main criterion for the classification.

Instead, in our method the statistical properties of materials are used for the classification. These

properties are independent of object shapes.

Lundström et al. [56] introduced a method to classify different tissues by the local histograms

in the neighborhood around a sample point. Caban and Rheingans [7] used textural properties

to differentiate between materials, possibly with similar data values. These methods are able to

separate materials but they use a neighborhood with a fixed size for the extraction. Thus, these

approaches do not differentiate between homogeneous and inhomogeneous regions.

Laidlaw et al. [45] use Bayes’ theorem on a small neighborhood of a voxel to classify mixed

materials. Tenginakai et al. [68, 69] introduced a method to extract salient iso-surfaces based

on statistical methods. A different classification based on statistics was introduced by Kniss

et al. [43]. For the estimation of the statistical characteristics certain features of the different

materials have to be known. For our approach no prior knowledge of material properties is

necessary. Lundström et al. [57] used the variance in a neighborhood of a voxel to separate

materials. In comparison to our method, they used a fixed neighborhood size to estimate the

variance. In a previous publication (Patel et al. [59]) we used statistical properties to manually

classify materials for differently sized neighborhood regions. In this approach we extract the

statistical properties for the best suited neighborhood size semi-automatically. Furthermore,

we use these statistical properties to define a transfer-function space and to enhance the visual

appearance of the resulting rendering.

2.2 Statistical Transfer-Function Space

The idea behind the statistical transfer-function space is that materials are distinguishable accord-

ing to their statistical properties. Since the data is not segmented, we are not able to calculate

the statistical properties for different materials in general. Therefore, we introduce a technique

which extracts statistical properties for the neighborhood of each sample point individually. We

expect that sample points from the same material get similar statistical properties. In the new

transfer-function space this leads to clusters for different materials, which makes it possible to

design meaningful transfer functions. In this section we describe all steps which are necessary to

generate the statistical transfer-function space.
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Figure 2.1 shows an overview of the workflow. To generate a visualization based on statistical

transfer functions, different processing steps have to be applied on a volume data set. For the

generation of the transfer-function space, statistical properties, i.e., the mean value and the

standard deviation, are extracted first. This is done in a pre-processing step. The user defines a

confidence level for this step. This confidence level is a quantity for the tolerance in the extraction

step. It is further explained in Section 2.2.1.

The features for each sample point are then depicted in the transfer-function space. They

serve as a clue for the user to design a transfer function. The transfer function together with the

statistical properties drives the successive visualization step. Additionally the statistical properties

are used to enhance the shading.

workflow

statistical properties
extraction

definition of
statistical TF space

statistical properties
in visualization

user

TF design

confidence
level

setting

volume data set

Figure 2.1: Statistical transfer-function workflow.

To exemplify our new method, we generated a synthetic data set of size 128× 128× 128.

The data set contains three different materials. In Figure 2.2 a slice through the center of the

data set is shown on the left side. Material 2 in the center of the data set is a sphere, embedded

between material 1 and material 3. Gaussian white noise has been added to all three materials.

As mentioned before this is a realistic noise model for most data sets especially for CT and MRI.

On the right side of Figure 2.2 the histograms of the materials are shown. On the horizontal

axis the data values f (x) with x ∈ R
3 of the sample points are mapped. The vertical axis holds

the frequency of occurrences F for each data value. The Gaussian distributions of all three
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materials have high standard deviations (σ1 = 0.14, σ2 = 0.09, and σ3 = 0.11), consequently the

distributions considerably overlap each other. The blue line gives the frequency distribution of all

three materials together.

f1

F

0.50.3 0.7

material 1

material 2

material 3

combined
frequency
distribution

material 1 material 3

material 2

Figure 2.2: The figure depicts a slice through the synthetic data on the left side and the frequency

distribution of the data values on the right side.

The synthetic data set exemplifies noisy data. The overlapping of the distributions for different

materials is a problem which often occurs in real-world data sets [72]. In the further explanation

of the method, the synthetic data set is used to show the effects of the different processing steps.

2.2.1 Statistical Properties Extraction

The extraction of the statistical properties is essential for our statistical transfer-function space.

For sample points within a certain material, the extracted statistical properties should be close to

the statistical properties of the entire material. We achieve this by investigating a neighborhood

region around each sample point. To keep the neighborhood within the same material, we

introduce an adaptive growing which is dependent on the local features.

The distribution of data values of a single material in real-world data sets, such as MRI or

CT, can be approximated very well by the Gaussian white noise model. Therefore, we consider

only the Gaussian distribution as basis for the calculation of statistical properties. A Gaussian

distribution is described by its mean value and standard deviation. Hence, we use these two

parameters as our statistical properties.

For the extraction of the statistical properties, we iteratively grow a spherical neighborhood

by increasing the radius by one voxel in each step. We compare for each growing step if the

newly grown hull still belongs to the same material. Figure 2.3 shows a cross section of such

a neighborhood. In the following explanation we use two different notations for the statistical

properties. The mean value μr and the standard deviation σr for a certain radius r, are the

estimations for the statistical properties of all points within a sphere of radius r. μ̇r and σ̇r are the

statistical properties of the points in the outer hull of the sphere (see Figure 2.3).
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Figure 2.3: The standard deviation and mean for the sphere and the outer hull.

In each growing step several calculations are done to decide if the growing should be

terminated or not. Figure 2.4 shows the processing steps for each growing step. The goal of

these steps is to detect whether the sphere grows into another material. In such a case the loop is

terminated.

As initial parameters for the loop, the mean value and the standard deviation of a sphere with

a radius of one are used. The data values of points in the sphere may not be normally distributed.

This can happen when the sphere intersects two materials. Such a situation should be detected in

an early stage so growing can be terminated. Therefore, we apply a normal-distribution test, as

described later in this section, to check if the points in the initial sphere are normally distributed.

Only if this test is passed, the loop is started with the initial statistical properties. Otherwise μ1

and σ1 of the initial sphere are used as statistical properties for the actual sample point.

In the loop depicted in Figure 2.4, the first step is the calculation of the statistical properties

μ̇r and σ̇r for points in the hull at a radius r. In the next step it is tested if the values in the hull
are normally distributed. If this is the case, the properties are compared with μr−1 and σr−1.
In the case the statistical properties are similar, the statistical properties of the hull are merged

with the statistical properties of the sphere r−1. If a sample point lies in the center of a large

homogeneous area, the loop is terminated when the maximum radius rmax is reached.

For the extraction of the statistical properties, a confidence level ω has to be set. This

confidence level expresses the general confidence in the distribution of data values in a data set

with respect to the general noise level. It can be set differently to adapt the model for various

data types such as MRI or CT. In the following part of this section, the usage of ω and the other

processing steps are described in more detail.

Properties Estimation

In each successive cycle of the extraction loop, the statistical properties of a larger region are

considered. Since the statistical properties for sphere r−1 are already known, we are interested

in the statistical properties μ̇r and σ̇r of the additional points in the hull r (see Figure 2.3).

As the distribution is considered to be Gaussian, we estimate the mean value and the standard

deviation for the points in the hull r [19]. The mean value μ̇r is the average and σ̇r is the biased
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Figure 2.4: Calculation loop for the extraction of the statistical properties.

standard deviation of all points:

μ̇r =
1

Ṅr

Ṅr

∑
i=1

fi, (2.1)

σ̇r =

√√√√ 1

Ṅr

Ṅr

∑
i=1

( fi− μ̇r)2 (2.2)

Ṅr is the number of points included in the hull r. fi denotes the data value of a sample point in

the hull. With these estimations for the mean value and standard deviation we expect to get

values which are close to the real statistical properties of the material in the hull.

Normal-Distribution Test

Before we apply a similarity test with the derived properties of the hull and the statistical

properties of the inner sphere, it must be ensured that the distribution is normally distributed.

This is necessary because the similarity test is based on normal distributions. When two

materials are intersecting the hull, the distribution is not normally distributed. In such a case

the distribution would have two peaks. With the normal-distribution test we want to detect such

situations and terminate the loop.
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In statistics, several normality tests exist. We chose the Jarque-Bera test (JB). This test uses the

third-order moment, i.e., the skewness Ṡr, and the fourth-order moment, i.e., the kurtosis K̇r, of

the points in the hull at radius r for the calculation of JB:

JB =
Ṅr

6

(
Ṡ2r +

(K̇r−3)2

4

)
(2.3)

The benefit of using this test is that it is not necessary to sort the point values of the distribution.

Therefore, it can be efficiently implemented on the graphics hardware.

The parameter JB is used to test for the null hypothesis with a test level 1−α of 99.9%. This

results in a test value of 13.82 according to statistical lookup-tables:

H0 : JB < 13.82(1−α=0.999) (2.4)

With the high test level, only distributions with a high divergence to a normal distribution are

declined by the null hypothesis. This is necessary, due to the low number of samples which are

used for the test. Only distributions which are very different from a normal distribution will fail

the test.

If the null hypothesis is declined, the loop is terminated and μr−1 and σr−1 of sphere r−1 are

taken as statistical properties for the sample point S. If the test passes the null hypothesis, we
continue with the similarity test.

Similarity Test
In this processing step, we measure the similarity between the statistical properties in the hull r
and the statistical properties of the sphere r−1. The goal is to detect whether the hull is still

part of the same material as the sphere r−1.

Through the properties-estimation step, we get the statistical properties of the hull. We have

calculated the statistical properties of the sphere r−1 in the preceding loop cycle. Since all the

values are estimations and the numbers of points which are involved in the estimation is rather

low, we use a variant of the student’s t-test for the similarity test. This test is best suited for

Gaussian-distributed populations with small sample sizes [19].

In our case, we have two independent samples which were used for the estimations. Since

the mean values as well as the standard deviations of both estimations can vary, we use a

generalized form of the student’s t-test also known as the Welch’s t-test [77]. As primary

parameter for the similarity test, a tr parameter is calculated:

tr =
μr−1− μ̇r√
σ2

r−1
Nr−1−1 +

σ̇2
r

Ṅr−1

(2.5)

The tr parameter is dependent on the mean values, the standard deviations, and sample sizes of

both distributions. Additionally, a degree-of-freedom δr has to be calculated:

δr =

(
σ2

r−1
Nr−1−1 +

σ̇2
r

Ṅr−1
)2

σ4
r−1

(Nr−1−1)3 +
σ̇4

r
(Ṅr−1)3

(2.6)
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The degree-of-freedom δr is only dependent on the standard deviations and the sample sizes,

but not on the mean values. The δr value together with the confidence level ω are used as

parameters to get a reference tω(δr) value in a t-test lookup-table. This value is used to test for

the null hypothesis H0:

H0 : |tr|< tω(δr) (2.7)

If the null hypothesis is true, it is assumed that both Gaussian distributions are the same.

If the null hypothesis is declined then both distributions are expected to be different with a

probability of 1−ω . Therefore, a small confidence level ω results in a high probability that

both distributions are not similar if the null hypothesis is declined. On the other hand, the

reference tω(δr) value for a small ω is high which makes the similarity test less selective.

As in the step earlier μr−1 and σr−1 of sphere r−1 are taken as statistical properties if the test

is failed. Otherwise we continue with the next growing step.

Merging Statistical Properties

If the statistical properties have passed the normal-distribution test and the similarity test, we

assume that the material in the outer hull still is the same as in the sphere r−1. Therefore, the

statistical properties of both areas can be merged together.

This step results in a new μr and σr. These statistical properties represent the distribution of all

points in the sphere r. The merged statistical properties are used in the successive cycle of the

loop to do the similarity test with the next larger hull with radius r+1.

The loop is terminated when the normal-distribution test or the similarity test fails or when the

maximum radius is reached. In the first two cases we store μr−1 and σr−1 as statistical properties
μ and σ for the sample point S. In the third case we take the statistical properties μr and σr after

the merging step.

Additionally, we store the radius rbreak at which the loop is terminated. The closer rbreak is

to rmax the more significant the statistical properties are at this point, because the population

of points for the estimation is larger. In the next section, rbreak is used to highlight statistical

properties with a higher significance.

Figure 2.5 shows the statistical properties μ and σ for the synthetic data set at different

confidence levels ω . For a low ω of 0.1%, the similarity test is more easily passed. Therefore, the

sphere grows larger and results in more consistent values for μ and σ . For the transfer-function

space this means that the clusters of materials are smaller. If the confidence level ω is high, e.g.,

30%, the loop has a higher probability of being terminated. Since in this case a smaller area is

used to estimate the statistical properties, the results for μ and σ are less smooth compared to a

low ω but details, such as borders, are preserved better.

Congruent to the characteristic in this example, ω should be chosen according to the type of

data. If a modality is very noisy and the distribution of points does not exactly follow a normal

distribution, the confidence value should be chosen rather low. Therefore, some details get lost but

the clusters for different materials in the transfer-function space are smaller. MRI is an example

of such data. In such a case, ω should be set to a low value, such as 0.1%. For less noisy data

types with a Gaussian-like distribution of the data values, e.g., CT, ω can be set to a higher value,
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Figure 2.5: Statistical properties (μ and σ ) of the synthetic data for three different confidence

levels ω = {0.1%,5.0%,30.0%}. The brighter a point is, the higher is its value.

such as 20%. In this case details are better preserved and the clusters are small enough due to the

low noise level. The synthetic data set is rather noisy but the distribution of the points follows

exactly a normal distribution. Therefore, a confidence level of 5% was chosen. The values for the

confidence levels were found through experiments, where we tried to achieve the best balance

between noise reduction and detail preservation. This has to be done only once for a certain data

type. In Section 2.4 we demonstrate that the selected ω-values work well for different MRI and

CT data sets.

2.2.2 Definition of Statistical Transfer-Function Space

By extracting the statistical properties we get a mean value μ and a standard deviation σ for each

sample point. In the next step we use this information for the design of a transfer function. First

we have to define a transfer-function space, which is used for the design of a transfer function. The

intent of this statistical transfer-function space is to separate different materials in the presence of

noise.

For the transfer-function space we use the original data value f of each sample point together

with the mean value μ and the standard deviation σ . We follow the convention of using the

horizontal axis of a transfer-function space for the data value. The horizontal axis is, however, also

used to depict the mean μ . In the new transfer-function space the data value f on the horizontal
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axis is considered as starting point of a line segment. The statistical properties μ and σ for each

sample point define a second point, where the standard deviation is given on the vertical axis.

In Figure 2.6 the transfer-function space is shown. On the left side the features of a sample

point S are drawn as a line segment in this space.

�

�

f,1

0.10

f(S)

(�(S), �(S))

TF region

(���, �  )R R

�mod
1.0

Figure 2.6: Schematic representation of the statistical transfer-function space. On the left side

the features of a sample point are shown as a line segment. On the right side a transfer-function

region in the new space can be seen.

Since the clusters for each material are expected to show up around a certain mean value and

standard deviation, an elliptical area is used to define a transfer-function region. On the right side

of Figure 2.6 an example of such a region is shown. The center of the region is at (μR,σR). A
sample point is only classified by this region when its statistical properties (μ,σ) lie within the
elliptical area.

The optical properties for each region are represented with a color cR and an opacity αR.

The position of the transfer-function region (μR,σR) also defines a corresponding Gaussian

distribution of data values along the horizontal axis. The opacity of sample points is manipulated

according to this distribution:

αmod = αR ∗ e−
1
2

(
f−μR

σR

)2

(2.8)

αR is the opacity defined for the respective transfer-function region. f is the data value of the
sample point and (μR,σR) is the center point of the region. Equation 2.8 is represented as a curve

along the horizontal axis in Figure 2.6, below the transfer-function region. The opacity for data

values f close to the center μR of the region are modified less in contrast to the opacity of data

values f , which are more different to μR. By this modification, we reduce the influence of sample

points which are less likely part of the desired distribution.

Figure 2.7 shows the sample points of the synthetic data set in the statistical transfer-function

space. In Figure 2.7(a) each sample point is represented as a line segment. Since the line segments

of points with high σ values might occlude points with low σ values, an alternative representation

is shown in Figure 2.7(b). In this representation only a single dot at (μ,σ) is drawn for each
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sample point. In both representations three large clusters for the different materials and three

smaller clusters for the borders can be seen. The border between material 1 and 3 actually consists

of two small clusters. This results from the fact that the mean values of material 1 and 3 are very

different. Therefore, it makes a difference if the original sample point of a neighborhood-region

lies in material 1 or 3, because more points from one or the other material are then used for the

estimation of the mean value.

If the difference between the mean values of two materials is smaller, e.g., between material 1

and 2, then only one cluster shows up in the transfer-function space.

To enhance points with higher significance, we weight the opacity of line segments or dots

by the termination radius rbreak of the calculation loop. Thus, statistically well defined interior

regions are emphasized.

2.2.3 Statistical Properties in Visualization

In addition to the definition of a transfer function we use the statistical properties as input for the

shading process. In volume visualization gradient-based techniques are most common for shading.

They are computationally less expensive and faster as gradient-free shading techniques. For noisy

data the gradient-based techniques have the disadvantage that the noise in the data deteriorates

the estimation of the gradient and, therefore the shading [5]. Especially in homogeneous regions,

where the gradient magnitude is rather low, noise has a high impact on the estimation of the

gradient direction.

To reduce the influence of noise on the gradient, we use the mean values of the sample points

to estimate the gradient direction. The mean values are smoother than the original data values and,

therefore, the gradient direction in nearly homogeneous regions is estimated better in comparison

to the widely used central-difference method. With this gradient we calculate a color cshaded
based on Phong shading [61].

For the observer, shading is important for the perception of surfaces. To avoid visual clutter

resulting from shading all parts of the volume, we apply shading only for border regions. For this

purpose the standard deviation σ can be used. σ is higher in border regions and it is less affected

by noise than the gradient magnitude. Therefore, σ is used to interpolate between the shaded

color cshaded and the unshaded color cunshaded :

c = (1−σ)cunshaded +σcshaded (2.9)

The lower σ is, the less shading is applied. This leads to a visualization where the border areas are

shaded more as opposed to the rest. The synthetic data with traditional shading in Figure 2.8(a) is

shown in contrast to the shading based on statistical properties in Figure 2.8(b). With statistical

shading the influence of noise is clearly reduced without modifying the data itself by filtering or

other techniques.

2.3 Implementation

The steps which are described in Section 2.2 can be divided into two parts of computation. The

first part is the extraction of statistical properties. This is a pre-processing step which has to be
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Figure 2.7: Line and dot representation in the statistical transfer-function space of the synthetic

data.

recalculated only when the confidence level ω is changed. The other part is the visualization with

the usage of the statistical transfer function. This part is done in real-time.

Since the extraction of the statistical properties is a highly parallel process, we use graphics

hardware. Nevertheless, the extraction is expensive because many lookups have to be performed

to estimate the statistical properties.
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(a) Traditional shading (b) Statistical shading

Figure 2.8: Visual difference between traditional shading and statistical shading. With statistical

shading the influence of noise is reduced.

The maximum number of lookups per sample point is dependent on the maximum radius rmax

of the calculation loop. We decided to set the maximum radius to a value of 6. With this radius, a

maximum of 925 lookups are done per sample point. This leads to the following 99% confidence

limits:

μ = μ± (0.0424σ) (2.10)

This means that the estimated μ is, with a confidence of 99%, not farther away from the real

mean value μ than 0.0424 times σ . Even for a large σ the interval for μ is small enough for our

purpose of estimating the statistical properties.

In addition to the maximum radius rmax, the confidence level ω influences the speed of the

calculation. The lower ω , the less likely it is that the calculation loop is terminated. Therefore,

more lookups have to be done for the estimation of the statistical properties. In Figure 2.9 the

termination level at different radii is shown. The graph shows the percentage of all sample points

for which the calculation loop is already terminated at a certain radius. For the synthetic data set

different confidence levels are used. It can be seen that the termination level at the maximum

radius of 6 is much lower for an ω of 0.1% in comparison to an ω of 30%. For the low ω the

loop is only terminated for points close to the border. A high ω causes terminations also for large

variations in homogeneous regions. As shown in Figure 2.5, the visual difference of various ω
values can be seen in the smoothness.

Apart from the synthetic data set, Figure 2.9 also shows the termination level for two real-

world data sets with according confidence levels for each type of data. In the case of CT data,

we get a high termination level even at a low radius. This results from the fact that areas with

zero variation, e.g., air, do not pass the initial normal-distribution test. For MRI data, the curve is

more linear, due to the fact that all parts contain at least some noise.
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Figure 2.9: Termination level of the calculation loop for different data sets and confidence levels

ω .

Table 2.1 shows the time measurements for the estimation of the statistical properties for the

data sets of Figure 2.9 on a GeForce GTX 260. The different settings for the level ω have only

a small influence on the calculation time. This results from the fact that most time is used to

initialize the graphics hardware for the calculation.

MRI Head CT Backpack Synthetic Data

256×256×128 256×256×186 128×128×128

ω=0.1% ω=20% ω=0.1% ω=5% ω=30%

2.386sec 2.330sec 0.654sec 0.649sec 0.646sec

Table 2.1: Time measurement for the estimation of statistical properties for different data sets.

After the extraction of the statistical properties, we use raycasting for the visualization. The

statistical properties μ and σ are stored in additional channels of the volume. To classify a sample

point with the designed transfer function, the parameters of all transfer-function regions are

handed over to the graphics card. There it is tested if the statistical properties of a sample point

lie within a transfer-function region. If so, the color and opacity is assigned to the sample point

as described in Section 2.2.2. This classification can be implemented efficiently on the graphics

card. We get interactive rendering rates for data sets of size 256×256×256 on a GeForce 8800

GT graphics card.

2.4 Results and Discussion

In this section we show some results generated with our new method and compare them with

other techniques.



Chapter 2 Volume Classification based on Statistical Transfer-Function Spaces 33

2.4.1 Synthetic Data Set

For the explanation of the method we have introduced a synthetic data set, as shown in Figure 2.2.

The three different materials in this data set are rather noisy. Therefore, it is difficult to separate

the materials in common transfer-function spaces. In Figure 2.10(a) the 2D transfer-function

space with axis f and | f ′| and in Figure 2.10(b) the LH histogram-space were used to classify the

different materials. With the 2D transfer function we were not able to classify all points correctly,

because of the density overlapping. Especially at the border between material 1 and material 3

(blue and yellow) points are classified as material 2 (red). In the LH histogram-space it is easier

to separate the different materials and the border but transitions are very ragged.

In Figure 2.10(c) the result of our method is shown for an ω of 5%. Since the different

materials have different statistical properties they can be clearly seen as clusters in the statistical

transfer-function space. For the synthetic data, smoothing techniques would be able to reduce

the cluster sizes in the 2D transfer-function space and in the LH histogram-space. However,

the smoothing only clusters the data values. Our approach uses the standard deviation for the

classification as well. Therefore, we are better able to classify different materials especially if

they differ by their standard deviation, such as at border regions.

2.4.2 Real-World Data Sets

In the real world, noise is typically present in measured data sets. The amount of noise varies

between acquisition techniques. In MRI data sets, the noise level is rather high. Therefore, it is

especially difficult to classify different materials in such data sets. A common problem is the

visualization of the brain in an MRI scan of the head. Figure 2.11 shows different results of

this task for different classification techniques. Below each rendering result, the settings of the

transfer function for each of these spaces are shown. In comparison to the 1D (Figure 2.11(a))

and 2D transfer function (Figure 2.11(b)) as well as the LH histogram-space (Figure 2.11(c)), we

can better separate the brain from other tissues with our method (Figure 2.11(d)). In the statistical

transfer-function space it is also easier to design a transfer function because the brain tissue has

different statistical properties than other tissues in this data set and is more tightly clustered.

As can be seen in Figure 2.11(d) the cluster is rather large due to the different matters in the

brain but it is distinguishable from other clusters of other tissues. In comparison to this, in the

2D transfer-function space and in the LH histogram-space no cluster for the brain tissue can be

seen. Additionally, Figure 2.11 shows that shading based on statistical properties (Figure 2.11(d))

results in a smoother surface in comparison to normal gradient-based shading (Figure 2.11(a)-(c)).

The ability of the new method to separate different materials by their statistical properties

can be used for many applications. An example is the detection of certain materials in CT scans

for security checks. Figure 2.12 shows the scan of a backpack containing three different fluids.

With a 2D transfer function, as shown in Figure 2.12(a), the different fluids cannot be classified

without classifying also other parts of the data set. It is also hard to detect the fluids in the

transfer-function space because they do not show up as clusters. In comparison, our method can

clearly classify the fluids, as shown in Figure 2.12(b). It can also be seen that the fluids show

up as clusters with very low standard deviation in the transfer-function space. This makes it
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Figure 2.10: Classification results of the materials in the synthetic data set with different methods.

much easier to define a transfer function. Furthermore, the shading with our method is slightly

smoother.

Figure 2.13 shows a result of an MRI scan. The data set contains a tumor inside the brain.

The statistical properties of the tumor are actually different from the rest of the brain which is

captured in our transfer-function space. This can be seen in Figure 2.13. Since the tumor is rather

small, only a few sample points show up in the area of the classification region of the tumor (red
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Figure 2.11: Comparison of the statistical transfer-function space with the 1D and 2D transfer

function space as well as the LH histogram-space. The task for the generation of the results was

to classify the brain in the different spaces.

region). However, with other methods, such as 1D, 2D, and LH transfer functions, we were not

able to clearly separate the tumor from the brain.

The results show that the new method can be used for various data sets and different tasks.

The main reason for this is the confidence level ω , which can be set according to the type of data.

For MRI, e.g., where the material distributions slightly differ from a Gaussian distribution, we set

ω to a low level in comparison to CT data. We are able to classify different materials even if the

data type is different. This is not as easily possible in other common transfer-function spaces.
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Figure 2.12: Detection of different fluids in a CT scan of a backpack.

There are some limitations of the new technique. One drawback is the rather high memory

consumption because for each sample point two different statistical properties have to be stored

together with the data value. Thus the data size is tripled. For large data sets this could exceed the

memory of a graphics card. Another penalty can occur for noise distributions very different from

Gaussian white noise. In such cases the test methods have to be adapted to the given frequency

distribution in the data sources. For this approach we concentrated on measured data, where the

distributions of data values are similar to a Gaussian distribution.

Although the confidence level is the only parameter which has to be set by the user, this

parameter should be defined automatically. This should be possible by using a termination level.

With the termination level at different radii it is probably possible to detect if ω is either too high

or too low for a given data set. Furthermore, an automatic detection of clusters in the statistical

transfer-function space can be implemented in a future work. By using the exit radius rbreak of

the calculation loop, it should be possible to automatically find significant clusters for different
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Figure 2.13: Detection of a brain tumor. For the extraction of the statistical properties ω was set

to 0.1%.

materials. This additional step should accelerate the design process for transfer functions because

an initial setting can be provided.

2.5 Conclusion

In this chapter a method was presented which uses the local neighborhood around each sample

point to extract some features based on statistics. With the employment of statistics it is possible

to reduce the influence of small variations in the data, such as noise or other small artifacts, in

the classification process. The statistics is able to reveal some information about the materials

represented in the data which cannot be detected by considering only local features, such as the

data value alone.

The statistical properties were used to define a novel transfer-function space. In this transfer-

function space it is possible to better separate different materials in comparison to other widely

used transfer-function techniques. Even for very noisy data sets, such as MRI data, the materials

are still distinguishable by their statistical properties.

Additionally, the statistical properties are used in the shading calculations. Through this

approach, the influence of noise on the shading is reduced as well.

In our experiments, the novel transfer-function space has proven to produce better results

for different tasks than other common transfer-function techniques. Therefore, we believe the

statistical transfer-function space can be used for classifying different materials in a volume data

set. Through the user-specified confidence level it can be employed for data sets from various

modalities.

In the next chapter a method is described which uses the value distribution in the entire data set

to extract features for the classification. Through this it is possible to extract different information

about the data in comparison to features which are extracted in the local neighborhood.
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T
HE classification of data should enhance parts of the data which contain most information

for a certain task. In the previous chapter a method was introduced which is able to

classify different materials in a data set. Through this it is possible to assign different

optical properties to different materials in a novel transfer-function space. The features for the

transfer-function space were extracted in the local neighborhood around each sample point. The

method is adapted for the classification of a data set from a single modality.

Currently, the trend towards data acquisition using data sets from multiple modalities is

increasing in order to facilitate, e.g., better medical diagnosis. As different modalities frequently

carry complementary information, the goal of the method in this chapter is to provide the user

with a consistent interface for the enhancement of complementary information in the different

modalities through the classification process.

Normally a side-by-side view is provided in medical applications for the inspection of the

different modalities. A physician can simultaneously scroll through both registered modalities.

This practice has two main drawbacks. One is the missing direct visual combination of the data. A

physician has to mentally overlay the two images to get the corresponding points of one modality

in the other one. A second drawback is the restriction to a 2D visualization. These drawbacks can

be eliminated by the fused display of both data sets together in a 3D multimodal visualization.

The challenge for such a visualization is the density of information in space. For each sample

point at least two values from the different modalities are present. To reduce the density a transfer

function can be used which defines optical properties, such as color and opacity, for certain values.

The transfer function can be controlled by the user to change the appearance of the result image.

The more input values are taken to classify a sample point and assign optical properties to it, the

harder it is for the user to find a good transfer function. This is the main problem of multimodal

visualization because there are at least two values involved.

In this chapter, we introduce a novel concept for defining transfer functions in multimodal

volume visualization. Our method aims to reduce the complexity of finding a good transfer

function. A new transfer-function space is provided which can be controlled by the user in

an intuitive and familiar way. The information-theoretic features which are used to define the

38
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transfer-function space are extracted from the global value distributions of all voxels in the data

set.

Since the design of a transfer function is a non-trivial task, we designed the transfer-function

space in a way which is similar to well-known transfer-function spaces. Hence the design process

of a transfer function is easier in comparison to a completely new transfer-function space. To

achieve this, the values of both modalities are fused based on the features which are extracted

through information theory. This results in a fused transfer-function space with a single value

and a single gradient magnitude as parameters. A measure for the complimentary information of

both modalities is used as additional parameter for more user control and a better separation of

different materials in the classification process.

In Section 3.2 the approach is described in detail. We show how the retrieved information

of the value distribution can be used to generate the transfer-function space. Section 3.3 briefly

describes an efficient implementation of the new method. The usability of the new method is

shown in Section 3.4 with some results. Conclusions and ideas for further work are given in

Section 3.5. First an overview of related works on this topic is given in the following section.

3.1 Related Work

All different methods for multimodal visualization can be classified - as described by Cai and

Sakas [8] - according to the level in the rendering pipeline in which they are applied. In the

illumination-model-level intermixing optical properties are assigned to a combination of values

from the different modalities. The accumulation-level intermixing fuses the values after optical

properties are assigned to each modality individually. In the image-level intermixing the fusion is

done after the 2D images have been rendered.

The image-level intermixing is the simplest way for the fusion of two modalities, but it has

the disadvantage that the 3D information is lost. Therefore this fusion technique is typically just

applied on single slices of the volume. Several techniques have been developed for this purpose,

such as alternate pixel display or linked cursor [64, 66]. These techniques are covered by the field

of image processing [76].

Due to the increasing speed of computers and graphics hardware volume rendering became

more popular and, therefore, also the multimodal fusion could be done in the volume space. The

first methods were based on surface models. Levin et al. [48] generated a surface model from an

MRI scan and mapped the Positron Emission Tomography (PET)-derived measurement onto this

surface. Evans et al. [18] generated an integrated volume visualization from the combination of

MRI and PET. These works are mainly focused on the combination of anatomical and functional

images. A more general approach for the fusion of modalities was introduced by Zuiderveld and

Viergever [83]. For this method an additional segmentation of the volumes is necessary to decide

which one to show at a given sample point. A more recent work by Hong et al. [30] describes

how fusion techniques in this intermixing level can be efficiently implemented using the graphics

hardware.

More sophisticated but more complex methods for multimodal visualization are directly

applied in the illumination-model-level. The intermixing in this level directly generates optical

properties from the combination of the values and additional properties of the two volumes
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at a single sample point. A case study for the rendering of multivariate data where multiple

values are present at each sample point was done by Kniss et al. [39]. In this work the idea

of multi-dimensional transfer functions for assigning optical properties to a combination of

values was used. Akiba and Ma [1] used parallel coordinates for the visualization of time-

varying multivariate volume data. Multimodal visualization of medical data sets by using

multi-dimensional transfer functions was shown by Kniss et al. [42]. The classification is done on

the basis of a dual histogram which depicts the co-occurrence of value pairs from both modalities.

Kim et al. [36] presented a technique which simplifies the transfer-function design by letting the

user define a separate transfer function for each modality. The combination of them defines the

two-dimensional transfer function. The problem with this technique is the loss of information by

reducing the multi-dimensional transfer function to two 1D transfer functions.

As mentioned before, the assignment of optical properties in multimodal visualization is de-

pendent on more than one value. If the whole information space is used then a multi-dimensional

transfer function is needed. In general it is a non-trivial task to design a multi-dimensional

transfer function because of its complexity. Nevertheless, multi-dimensional transfer functions

are commonly used for volume visualization. 2D transfer functions were first introduced by

Levoy [49]. In addition to the data value the gradient magnitude was used as second dimension

to classify a sample point. Due to the fact that the design of a 2D transfer function is non-trivial,

methods were developed, to support this task. Kindlmann and Durkin [37] introduced a semi-

automatic approach for the visualization of boundaries between tissues. Pfister et al. [60] gave

an overview on existing techniques to support the design task of transfer functions. The direct

manipulation widgets introduced by Kniss et al. [38] can be used to find regions of interest in

the multi-dimensional transfer-function space in an intuitive and convenient way. In other work,

Kniss et al. [41] describe an approach to efficiently represent multi-dimensional transfer functions

by Gaussian functions instead of storing a multi-dimensional lookup table.

For the definition of the multi-dimensional transfer functions, in addition to the values from

the two volumes, further properties can be used to better distinguish between tissues. In this

chapter, these additional properties are retrieved by methods from information theory founded by

Shannon [65]. He described how the probability of occurrence of a signal can be used to define

the information content of the signal. In imaging, information theory is used in different areas.

Image registration is one of these areas. Wells et al. [78] maximized the mutual information

to find a good registration position for two images or volumes. This idea is the basis for the

information-based part of the new approach in this chapter.

Rezk-Salama et al. [62] employed principal component analysis to assist the generation

of more effective transfer functions based on semantics. Our approach provides additional

derived quantities for evaluating the joint information of multiple modalities. In future work,

a combination of both methods could lead to even more intuitive user control for multimodal

volume visualization.
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3.2 Information-based Transfer Functions for Multimodal
Volume Classification

In this section we introduce a novel transfer-function space for multimodal volume classification.

The aim of all steps described here is the design of a transfer function space which is as simple as

possible but still able to separate different tissues or materials. The main contribution of the new

approach is the use of methods from information theory for the design of this transfer-function

space. Figure 3.1 shows all necessary processing steps to classify a tuple of input values ( ḟ , f̈ )
in this new transfer-function space with optical properties. The further sections describe these

processing steps in detail.

value 1 value 2

optical properties

information-based 
data fusion

opposite
information retrieval

information-based
transfer function classification

f f

f f
�

�fusedfused

Figure 3.1: Processing pipeline for the classification of sample points in a multimodal visualization

by an information-based transfer function.

In Section 3.2.2, we describe how the input values can be fused to get just a single value for

each pair of input values. Section 3.2.3 introduces an additional property δ which is employed to

refine the classification of different tissues through the transfer function. Finally, Section 3.2.4

describes how the fused values are used to define the new transfer-function space and how the

additional property δ is used to influence the classification. In addition to the introduction to
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information theory in Chapter 1, we will first describe in more detail in Section 3.2.1 how the

probabilities for the further calculations are estimated.

3.2.1 Probabilities in Volume Data

To estimate the probabilities within a volume we first assume that the volume is given as a set of

regularly arranged grid points. The simplest way to estimate the probability of a certain value

in such a volume is done by counting its occurrences in the whole data set and by dividing this

number by the total number of points in the volume. To do this for all values a histogram is

generated. In the histogram the count of a bin is increased if a value falls into the range of this bin.

When the counted numbers for all bins are divided by the total number of points in the volume,

we get a probability distribution p( f ) which returns a probability of occurrence for each value f .
For retrieving the information content of the joint occurrence of two values from two modali-

ties another probability distribution is needed. It returns a probability p( ḟ , f̈ ) for each tuple of
values ḟ from modality 1 and f̈ from modality 2, also referred to as joint probability. Analog

to the probability for the occurrence of only one value this probability distribution can also be

estimated by a histogram. Due to the dependency of two values, the histogram is defined in 2D.

This histogram is often referred to as dual histogram.

In the context of the joint probability p( ḟ , f̈ ) the probability of just a single value p( ḟ ) is
referred to as marginal probability. These two types of probabilities are further used in the

following sections to generate a new transfer-function space based on the methods of information

theory.

3.2.2 Information-based Data Fusion

At some point in a multimodal visualization pipeline the information from both data sets has to

be combined, as each sample point can only have one color and opacity. The idea behind the

information-based data fusion is to have an approach which loses as little as possible information.

Information can be measured based on the quality or the quantity of the data. To be measured

by quality, user interaction would be necessary to decide which region is important in which

modality. This would be a good measurement but it is a time-consuming process and has to be

repeated for each new data set.

A second way to measure information is based on quantity, i.e., frequency, of the data. For this

measurement the methods of information theory are employed. The idea behind this measurement

is that values which occur very often have less information than values which occur not so often.

For medical data sets this can be interpreted that larger regions with the same value, such as the

background, contain less information than smaller regions, such as border areas or small tissues.

The information content can be expressed by the following equation:

I( f ) =−log(p( f )) (3.1)

where p( f ) is the probability of occurrence for a certain value f . Through the log function the

information I( f ) is high for values with a low probability. The fusion should then be done in a

way to weight the value with more information content higher than the value with less information
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content. To formalize this weighting we introduce the following equation:

γ( ḟ , f̈ ) =
I( f̈ )

I( ḟ )+ I( f̈ )
(3.2)

The γ value is zero when the second modality has no information. It is one if the first modality

has no information. For a value of 0.5 both modalities contain the same amount of information

for a given pair of values.

With Equation 3.2 we get a quantity γ for each pair of values which can directly be used

for the weighting in the fusion step. The fusion of two values, ḟ and f̈ , is simply done by the

following equation:

f f used = (1− γ)∗ ḟ + γ ∗ f̈ (3.3)

The fused value f f used is close to the value of one modality when this modality contains much

more information than the other modality. Therefore, points with high information content in

just one modality are only slightly modified in contrast to their original value. This property

makes it easier to find such points in the new transfer-function space because they have almost

the same value as they would have in volume visualization of this modality alone. For points with

a γ around 0.5 the fused value is a mixture of both values and, therefore, is distinguishable from

points with high information content in one modality.

The gradients of both modalities are fused in the same manner as the values to get an

appropriate fused gradient according to the values:

∇ f f used = (1− γ)∗∇ ḟ + γ ∗∇ f̈ (3.4)

The fusion of the gradients is needed for the shading calculation as well as for classification

by the transfer function based on gradient magnitude. The result of the fusion is a single value

for each sample point like for the visualization of a single volume. This fused value together

with the magnitude of the fused gradient can be used for the classification by a transfer function.

Unfortunately some tissues are overlapping in this fused transfer-function space. Therefore an

additional parameter is introduced in the following section which supports the transfer-function

design for a better separation of different tissues.

3.2.3 Opposite Information Retrieval

In the previous section a quantity was calculated which indicates which of the two values has more

information. In this section we will define a quantity which indicates the information contained

in the joint occurrence of two values rather than the information contained in the occurrence of a

single value. This new quantity will be employed as another attribute for the classification of a

sample point. It allows for a better separation of different tissues.

For image and volume registration the maximization of the mutual information is a common

approach to find a good registration position. In this context the best registration position is found

when the mutual information is at a maximum. This means that in this position both data sets

contain the lowest possible opposite information. The mutual information is a quantity for the
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whole data set. In contrast the point-wise mutual information (PMI) is a quantity for the mutual

information of a certain combination of values. It is defined by the following equation:

PMI( ḟ , f̈ ) = log
(

p( ḟ , f̈ )
p( ḟ )∗ p( f̈ )

)
(3.5)

The PMI is zero when a pair of values occurs exactly as frequently as one would expect by

chance. This is the case when both values are statistically independent from each other and the

joint probability p( ḟ , f̈ ) is exactly the product of both marginal probabilities p( ḟ ) and p( f̈ ). If
the two values ḟ and f̈ occur together more frequently as one would expect by chance then the

result of the calculation is greater than zero. Conversely, the value is lower than zero if a pair of

values occurs less frequently as one would expect by chance. By the definition of Shannon this

case contains more information than a result value greater than zero because the occurrence is

less frequent. For a joint probability p( ḟ , f̈ ) of zero the PMI is by definition zero. For all other

probabilities the PMI can be normalized to a value between zero and one by the lower bound

(p( ḟ ) = 1 and p( f̈ ) = 1) and upper bound (p( ḟ ) = p( ḟ , f̈ ) and p( f̈ ) = p( ḟ , f̈ )) of the PMI:

PMInorm( ḟ , f̈ ) =
PMI( ḟ , f̈ )− log(p( ḟ , f̈ ))
log( 1

p( ḟ , f̈ ) )− log(p( ḟ , f̈ ))
(3.6)

This can be further reduced to:

PMInorm( ḟ , f̈ ) =
1

2
− PMI( ḟ , f̈ )

2log(p( ḟ , f̈ ))
(3.7)

The value of PMInorm approaches zero if the information carried by the pair of values is high.

Values close to one represent low information content. To get a high value for pairs of values

with high information content we define a new quantity δ as an inversion of PMInorm:

δ ( ḟ , f̈ ) = 1−PMInorm( ḟ , f̈ ) (3.8)

Figure 3.2 illustrates the behavior of δ . The different regions, labeled with capital letters,

have different colors to symbolize regions of different values in both modalities. The red crosses

are sample points for which the δ value should be calculated. For the sample point S1 the involved
marginal probabilities (p( ḟ ) and p( f̈ )) are rather low because only a small area (C1 and C2)

has the same value in both modalities. For the sample point S2 the marginal probability in the

second modality is higher because the sample point lies in a larger area B2. The joint probability

p( ḟ , f̈ ) is the same for both sample points because the combination of C1 and C2 occurs exactly

as often as the combination of D1 and B2. By calculating the δ values with these probabilities we,

however, get a smaller value for the sample point S1 than for the sample point S2.
This example can be interpreted in a way that for sample point S1 both modalities contain

correlated information whereas for S2 modality 1 complements the information of modality 2

because the region D1 is only represented in modality 1. This means that the δ value responds

with a high value for regions with high opposite information content. So this value can be used

to separate tissues which only show up in one modality from tissues which are present in both
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Figure 3.2: Example of slices of two different modalities to explain how the δ value is affected

by the value distribution. S1 and S2 are sample points for which the δ value is calculated.

modalities. It can be seen as a quantity which indicates the difference of information content in

both modalities at each sample point. Noise in the data sets does not influence the δ value. It

flattens the probability distribution function of a certain material but the relation between the

probabilities does not change and, therefore, the δ value is not affected. The following section

describes how this property can be integrated into the classification process.

3.2.4 Information-based Transfer-Function Classification

In the previous two sections we described how methods from information theory can be taken to

generate a fused value and a fused gradient as well as an additional property δ which indicates

the opposite information. These values together will be used now for the assignment of optical

properties.

Due to the existence of three values ( f f used ,
∣∣∇ f f used

∣∣, δ ) for each sample point the classifica-

tion could be done in a 3D space. For every triple of values optical properties would be assigned.

This approach is shown in Figure 3.3(a). The problem with this approach is the complexity of the

transfer-function design and, therefore, it is hard to find a good transfer function. To avoid this we

reduce the degree of freedom by defining a region only in the 2D transfer-function space ( f f used ,∣∣∇ f f used
∣∣). The design task in this space is easier because the 2D space is already well-known

from volume visualization of only one volume. Additionally, for each region a simple windowing

function is defined for the δ value. The selection of a windowing function for the extraction of

δ results from the fact that the δ values for points of one tissue in anatomical modalities or a

level of activity in functional modalities are in a certain value range. To extract such parts only

points with a δ value in this range should be selected. A windowing function is easy to adjust to

a certain value range and, therefore, is well suited for this purpose. The windowing function can
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Figure 3.3: The transfer-function space is converted from 3D (a) to 2D (b). Additionally, a simple

windowing function for the δ value is employed to modify the optical properties of each 2D

region.

be expressed by the following equation:

ψ(δ ) = max
(∣∣∣∣1− δ −δpos

0.5∗δwidth

∣∣∣∣ ,0
)

(3.9)

The parameters δpos and δwidth define the position and shape of the windowing function ψ(δ ) ∈
[0,1]. The original opacity α , assigned according to a 2D region in the transfer-function space,

is multiplied with this value to fade out points with a low value of this windowing function. In

Figure 3.3(b) the separation into a 2D region and a corresponding windowing function is shown.

3.3 Implementation

For a fast and efficient volume rendering it is necessary to do as many calculations as possible in

a pre-processing step. The most time-consuming part of the whole process is the generation of

the dual histogram and the two individual histograms of both modalities for the estimation of the

probabilities. This can be done before the rendering because the histograms are static for two

given volume data sets and do not change during the rendering process. The histograms are used

to calculate the γ and δ values as described in the previous section. Each of these values can be

stored in a 2D lookup table. They also do not change for two given volume data sets.

Figure 3.4 shows the processing steps for each sample point during the rendering process. The

processing steps with sharp corners are lookups and the processing steps with rounded corners are

calculations. As first step lookups in the a priori generated γ and δ lookup tables are done. The γ
value is used to fuse the two input values as described in Section 3.2.2. With the fused value and

the magnitude of the fused gradient a lookup in the tables of the transfer function is done. One
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Figure 3.4: Overview over the processing steps for each sample point during the rendering process.

Nodes with rounded corners are calculation steps and nodes with sharp corners are lookups.

lookup table stores the color c and opacity α for each point in the transfer-function space. The

second lookup table stores the parameters δpos and δwidth of the windowing function. The color

c of the 2D transfer function is directly used for further processing steps, such as shading. The

opacity α is modified by the windowing function according to the parameters δpos and δwidth as

well as the δ value. As output of this calculation step we get a modified opacity αmod which is

further used in the rendering process. The speed of the implementation is not a big issue because

all processing steps can be executed quite fast on the graphics hardware to achieve real-time

frame rates.

3.4 Results

Modalities can be generally classified into two groups: functional and anatomical modalities.

The most common anatomical modalities are CT and MRI. CT is typically used to show bone
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Figure 3.5: The images show single volume visualizations of CT data (a) and MRI data (b) in

contrast to multimodal visualizations by using a dual transfer-function space (c) (as described

in [42]) and the fused transfer-function space (d). The corresponding histograms with colored

regions for the assignment of optical properties are shown below the results.

structures. Soft tissues have a higher contrast in MRI. In Figure 3.5(a) the visualization of a CT

scan is shown and in Figure 3.5(b) the visualization of an MRI scan. Both visualizations can

be useful for special examinations but it can also be seen that both data sets contain some joint

information. Furthermore some regions with less information, such as the tissue around the brain

in the MRI scan, are hiding regions with more information, such as the brain itself.

The goal of a multimodal visualization is to combine relevant tissues from both modalities

and show them together to provide additional context. The relevance of a tissue is dependent on

the kind of examination. In a combination of CT and MRI of a head the brain could be the relevant
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part of the MRI scan and the bones could be the relevant parts of the CT scan. Figure 3.5(c)

shows the rendering result of a multimodal visualization based on the dual histogram. Both

relevant tissues, the brain and the bones, are visible but also a lot of artifacts show up in the result.

This follows from the fact that the brain cannot be better separated in the transfer-function space

based on the dual histogram. Figure 3.5(d) shows the result generated by the new method. In

comparison to the result generated with the traditional multimodal visualization technique the

brain is clearly separated from other tissues and only a few artifacts are visible.

Below the results in Figures 3.5(a) to (d) the corresponding histograms are shown. The

regions which were used to classify sample points with optical properties, such as color and

opacity, are also shown on top of these histograms. It can be seen that the regions for classifying

the brain tissue and the bones in the new fused transfer-function space, as shown in Figure 3.5(d),

are highly related to the individual regions in the single modality visualizations, as shown in

Figure 3.5(a) and Figure 3.5(b). The regions for the multimodal visualization, based on the dual

histogram, are shown in Figure 3.5(c). The position and shape of the regions in this transfer-

function space are completely different in comparison to the regions for the single modality

visualizations. This makes it much harder for the user to define regions for the transfer function

because the knowledge from the single modality visualization cannot be used.

As described in Section 3.2.4 the definition of a transfer function is done in two steps. In

Figure 3.5(d) only the regions are shown which assign a color and non-zero opacity to sample

points. Furthermore for each of these regions a windowing function for the δ value is defined.

This function is used to refine the separation by the transfer function. In Figure 3.6(a) the

rendering result is shown which is generated without the usage of a windowing function for δ .
The region which is used to assign optical properties to the brain is the same as for Figure 3.5(d).

It can be seen that the result contains a lot of artifacts. In comparison to that, Figure 3.6(b) shows

a result which is generated by the additional usage of a windowing function for δ to modify the

opacity. Through the refinement of the classification with the windowing function most of the

artifacts are gone and the brain is clearly separated.

Besides the reduction of artifacts the strength of the additional δ value is the ability to find

regions with high differences in both data sets. This can be very helpful for several applications,

such as the finding of a tissue which only shows up in one modality. Due to the properties of δ
as described in Section 3.2.3 regions with opposite information in both data sets have a high δ
value. Figure 3.7 shows the response of the δ value for the combination of two example data

sets. In Figure 3.7(a) and Figure 3.7(b) two data sets are shown which only differ at one region

where in modality 1 a sphere exists and in modality 2 not. Figure 3.7(c) shows the corresponding

distribution of δ values for the two modalities. In the region where the sphere is represented in

only one modality the δ value is the highest due to complementary information.

Figure 3.8 shows the result of a multimodal visualization for the combination of a CT scan

and a PET scan generated by the new approach. The regions of high activity inside the brain and

in the tumor on the neck are shown more opaque. This example shows that the method also works

with the combination of anatomical and functional modalities and, furthermore, with different

spatial resolutions.
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Figure 3.6: The two results show the effect of the usage of δ to modify the optical properties of a

2D region in the transfer-function space.

(a) Modality 1 (b) Modality 2 (c) δ distribution

Figure 3.7: The image in (c) shows the distribution of δ in volume space. It is highest in regions

with the largest difference. In this case the largest difference occurs where in modality 1 (a) a

sphere exists and in modality 2 (b) not.

3.5 Conclusion and Discussion

In this chapter a novel approach for the definition of transfer functions for multimodal visualization

was introduced. The initial idea was to define a user-friendly transfer-function space, which

makes it easy to find an expressive transfer function in order to visualize certain tissues of

both modalities. Through the fusion of the data values, based on the information content, a
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Figure 3.8: Multimodal visualization of a CT and PET scan. The more opaque regions indicate

regions of high activity such as in the brain and in the tumor on the neck.

2D transfer-function space is defined which is similar to the well-known 2D transfer-function

space of single volume visualization with value and gradient magnitude as the two dimensions.

Therefore, the distribution of points in this transfer-function space is easier to understand by the

user in comparison to other multimodal transfer-function spaces [42]. An additional δ value,

which describes the complementary information contained in a pair of values, is used for a better

separation of different materials. In the result section we have shown how the new transfer-

function space can be used to classify the most relevant parts of both modalities in a single

visualization.

In comparison to other approaches, which are used for multimodal visualization, the benefit

of the new approach is the conversion of the classification problem to a problem which is already

known from classification in single volume rendering. A penalty of the new method is that more

information does not always mean more importance. So it can happen that, e.g., artifacts can have

high information content while other, more important parts have lower information content. The

user can control this by defining a transfer function which has low opacity for such less important

parts.

In the method of this chapter the global distribution of data values was used as feature to

extract the information content. This is a good feature if small parts of the data sets or differences

in both modalities are of interest. In the next chapter a method is introduced which uses the

structure of objects in multimodal data to extract information-theoretic features. Through this it

is possible to enhance parts of the data based on their structure and not data values.
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I
MAGING modalities have different advantages and disadvantages typically related to the

physical principles they use to scan a specimen. They may suffer from different kinds of

artifacts, can be differently affected by noise, may be able to distinguish different materials or

tissues, and can have differences with respect to contrast and resolution. While the data generated

by each modality may be visualized separately, it is difficult to mentally integrate multiple sources,

particularly if spatial relationships are important. Thus, the effective combination, or fusion,

of multiple data sets in order to improve visualization, and, eventually provide insight into the

phenomenon under investigation has long been an active area of research.

The method presented in the previous chapter is able to enhance parts in multimodal data

sets which contain more information according to their data values. The approach is sensitive to

small variations in both modalities. Such variations can be caused by artifacts in one data set.

In this chapter we introduce a different approach which extracts features from the structure of

the objects. In this case we investigate the surface of the objects represented in the multimodal

data. Small variations, such as artifacts, have only a low impact in this classification since they

are only a small part of the whole object surface.

In the previous chapter the features which were extracted for the classification were used to

define a new transfer-function space. For the method described in this chapter, we chose a different

approach. Instead of generating a new transfer-function space which may be non-intuitive and

difficult to understand, we start by analyzing the joint information provided by both modalities.

We introduce the notion of multimodal surface similarity as a novel concept to understand the

similarities and dissimilarities between two scalar fields. By generating an isosurface similarity

matrix for each combination of data values from the two modalities, we obtain a concise structural

overview of the joint data space. We show that the information obtained in this way can be used to

assist multi-volume fusion in a non-invasive manner – the similarity is used as a visualization and

interaction tool for guiding the exploration process. Furthermore, we introduce a classification

approach which uses multimodal surface similarity to assign optical properties to regions in space

based on a distance measure in similarity space.

The remainder of the chapter is structured as follows. In Section 4.1, we review related

work on the visualization of multimodal volume data and other approaches connected to our

52
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method. Section 4.2 introduces synthetic data sets for the further explanation of our multimodal

classification approach. In Section 4.3, the general concept of multimodal surface similarity

is introduced. In Section 4.4, we show how multimodal surface similarity can be used in the

visualization process. Implementation details are presented in Section 4.5. The implications

of our approach as well as its limitations are discussed in Section 4.6. Finally, the chapter is

concluded in Section 4.7.

4.1 Related Work

As mentioned in the related work of Chapter 3, two volumes can be fused in different stages of

the rendering pipeline [22].

For the fusion in volume space, the spatial information of the data sets can be used to improve

the fusion quality. The first methods for volume fusion were based on extracted surfaces. Levin et

al. [48] and Evans et al. [18] introduced methods which extract surfaces from MRI and visualize

the activity level of a PET scan on these surfaces. Heinzl et al. [28] introduced a fusion workflow

specialized for dual-energy CT. With this method it is possible to fuse the most prominent features

from both data sets.

The mentioned methods first extract surfaces in the different modalities before the fusion. A

more sophisticated but more complex approach is the fusion without the intermediate step of

a surface extraction. A straight-forward method is the fusion by linear intermixing of the data

values. Eusemann et al. [17] has shown that this intermixing can be improved for dual-energy CT

by adapting the intermixing ratio to different tissues. Kniss et al. [39, 42] and Akiba and Ma [1]

introduced multi-dimensional transfer-function spaces based on features in a local neighborhood

around each sample point to classify multimodal data. Kim et al. [36] presented a technique

which simplifies the transfer-function design by letting the user define a separate transfer function

for each modality. The combination of them defines a two-dimensional transfer function. The

fusion of different modalities involves loss of information. In Chapter 3 a data fusion and transfer-

function space for multimodal visualization based on the information content was defined. With

this approach the loss of information defined by information theory [65] is minimized. In contrast

to the method in this chapter the information is just retrieved by the global frequency distribution

of values and not by structural similarities between the different modalities.

Apart from multimodal visualization, information theory is used for other visualization

tasks [74]. In flow visualization, e.g., Xu et al. [80] uses information theory to select meaningful

streamlines. Feixas et al. [20] compute the best viewpoint based on information theory. The

viewpoint should provide the best view on the data with respect to information loss. Chen

and Jänicke [10] introduce an information-theoretic framework for scientific visualization. For

our approach we are using the information theory to measure similarities between the different

modalities.

For many applications, such as industrial CT [28], surfaces are of particular interest. Surfaces

can be used to represent the interfaces between different materials. In order to extract a stable

isosurface, the selection of the isovalue is crucial. Khoury and Wender [35] use the fractal

dimension to measure how stable an isovalue is. The lower the dimension, the less noisy the

corresponding isosurface is. The contour tree [9] is used to topologically analyze the volume
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data. It is able to encode the nesting relationships of isosurfaces. Takahashi et al. [67] employed

a volume skeleton tree to identify isosurface embeddings in order to provide additional structural

information. Stable surfaces can also be classified by additional features in the transfer-function

space. Kindlmann and Durkin [37] introduced a transfer-function space in which the gradient

magnitude is used as additional classification feature. Interfaces between materials show up as

arches in this transfer-function space. In the LH histogram of Šereda et al. [72], the highest and

lowest value along a streamline in the gradient field are used for the classification. Sample points

at interfaces between materials form clusters in this space, which represent stable surfaces.

Bruckner and Möller [6] introduced similarity maps which represent the similarity of isosur-

faces for different isovalues. For the measurement of the similarity mutual information is used.

In a similarity map clusters with high mutual information can be detected. These clusters are

indicators of stable isosurfaces. In our approach we extend the idea of the similarity maps to

multimodal data. The resulting multimodal similarity maps are used for analysis, fusion, and

classification of multimodal data.

4.2 Synthetic Multimodal Data Sets

The usage of multiple data sets of the same object may offer better insight and understanding of

the function or structure of the object. There are different reasons why multimodal data sets are

used. In medicine, e.g., functional data is acquired together with anatomical data. The functional

data contains information about the function of inner organs in low resolution. The anatomical

data augments this information with the anatomy of the body in high resolution. In other fields

- such as industrial CT - the various data sets differ by the parameters which were used for the

scan.

For the further description of our algorithm we will differentiate between two types of

multimodal data which are depicted in this section. We will introduce synthetically generated data

sets which represent the two different types of multimodal data sets. In the subsequent sections

these data sets are used to explain multimodal similarity maps and highlight the usefulness of our

method.

Supplementary Data

Multimodal data is often used to supplement one data set with additional features. This is

necessary when a data set contains noise or other artifacts in some regions. In this case a second

data set is used to compensate for these artifacts but it introduces other disadvantages. In this

chapter we will refer to these data sets as supplementary data types. Basically both data sets

contain the same information. The disadvantage of one data set is compensated by the other one

and vice versa.

An example for supplementary data is dual energy CT. It is used in medicine and industrial

CT. The most common artifacts in CT scans in general are noise-induced streaks, beam hardening,

partial volume effects, aliasing, and scattered radiation [2, 31]. Due to the fact that different

energy levels have different attenuation characteristics, some of these artifacts appear prominently
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Figure 4.1: Data sets containing the same information but with different value ranges. The

histograms show the distributions of the data values.

only in one energy level. Hence it is possible to reduce artifacts by the fusion of CT data sets of

different energy levels.

For the description of our algorithms we generated two synthetic data sets which simulate the

behavior of supplementary data. In Figure 4.1 these two data sets and their frequency distributions

are illustrated. Both modalities contain the same information, i.e., four squares with gradually

changing data values. The value ranges for the squares are in both data sets slightly different.

This addresses the different attenuation characteristics in dual energy CT.

Complementary Data

Multimodal data sets are also used to combine information from different modalities. In this case,

a significant amount of information differs, or is not represented in one of the data sets. Fusion

aims to combine this information. We will refer to these multimodal data sets as complementary

data.

A typical example for complementary data is medicine. Modalities such as CT and MRI

measure different physical characteristics of the human body, and thus there are significant

differences between two such scans of the same patient. An even more pronounced example is the

combination of anatomical and functional modalities, such as CT and PET – there is only a rough
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Figure 4.2: Two synthetic data sets which represent complementary data. Data set 2 contains

information which is different from data set 1.

correspondence between the two modalities, as CT images contain no functional information at

all.

We will use the synthetic data sets illustrated in Figure 4.2 to demonstrate our algorithms

with complementary data. Data set 1 contains four squares while data set 2 contains two squares

and a circle. The missing square and the circle in data set 2 represent the different information

given in complementary data. In the next section these synthetic data sets are used to explain the

multimodal surface similarity measurement.

4.3 Multimodal Surface Similarity

Isosurfaces are important features of a volumetric scalar field f : R3→ R. An isosurface is the

locus of all points in the scalar field at which f attains an isovalue k:

Lk =
{

x ∈ R
3 : f (x) = k

}
(4.1)

The measure of isosurface similarity was introduced by Bruckner and Möller [6] as a means

of quantifying how much information two isosurfaces have in common. They used a matrix of

isosurface similarity for all combinations of isovalues within a single data set as the basis for

identifying relevant isovalues. We will refer to this method as self similarity maps, since the
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measurement of the similarity is between two isosurfaces of a single data set. In this section, we

first briefly review the original approach and then introduce the concept of multimodal similarity
maps to represent the similarity between isosurfaces of different modalities.

4.3.1 Self Similarity Maps

A robust method to measure the similarity between isosurfaces is mutual information. It has been
applied in many areas including shape registration [32] and viewpoint selection [71]. The mutual

information of two discrete random variables X and Y can be defined as [81]:

I(X ,Y ) = H(X)+H(Y )−H(X ,Y ) (4.2)

where H(X ,Y ) is the joint entropy and H(X) and H(Y ) are the marginal entropies of random

variables X and Y (see also Section 1.4). Since the mutual information is limited by the average

marginal entropies, it can be normalized to a value range of [0,1] by [44]:

Î(X ,Y ) =
2I(X ,Y )

H(X)+H(Y )
(4.3)

As a measure of isosurface similarity, Bruckner and Möller [6] proposed to compute the normal-

ized mutual information of the respective isosurface distance fields. For a given isovalue k and an

isosurface Lk the distance field Dk can be defined as follows [33]:

Dk(x) = min
∀y∈Lk

d(x,y) (4.4)

where d is a distance measure between the points x and y. If we consider N different isovalues

V = {k1, ...,kN} then the self similarity map can be defined as an N×N matrix SSM(i, j). Each
element of the matrix represents the normalized mutual information for a combination of isovalues

i and j.

4.3.2 Multimodal Similarity Maps

In the approach described in this chapter, we extend the concept of isosurface similarity maps to

multimodal data. Instead of investigating the similarity of isosurfaces in a single data set we want

to explore the similarity of two different data sets representing the same object. The isosurfaces

of both modalities are represented by:

L̇k =
{

x ∈ R
3 : ḟ (x) = k

}
(4.5)

L̈l =
{

x ∈ R
3 : f̈ (x) = l

}
(4.6)

where k and l are the two isovalues. The functions ḟ and f̈ are the scalar-valued functions

representing the two modalities. Based on the two isosurfaces, two distance fields can be

generated:

Ḋk(x) = min
∀y∈L̇k

d(x,y) (4.7)

D̈l(x) = min
∀y∈L̈l

d(x,y) (4.8)
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Figure 4.3: Pipeline for the generation of a multimodal similarity map. The illustration shows

which steps are necessary to calculate the similarity of isosurfaces for the isovalues k and l.

Figure 4.3 illustrates how the mutual information for a combination of isovalues l and k is

calculated. The first step is the generation of distance fields Ḋk and D̈l for the isosurfaces L̇k
and L̈l . In the next step the distances Ḋk and D̈l for each point x in the volume space are used to

generate a joint distance histogram. The joint distance histogram represents the joint probability

for a point x to have the distance Ḋk to isosurface L̇k and D̈l to isosurface L̇l . In Figure 4.3 an

example of a joint distance histogram is shown for two identical isosurfaces. In this case, all

points x in the volume space have the same distance to L̇k and L̈l .

Finally, the mutual information is calculated based on Equation 4.2. The joint and marginal

probabilities for the calculation of the joint and marginal entropies can be directly retrieved from

the joint distance histogram.
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If we assume that modality 1 has N different isovalues V̇ = {k1, ...,kN} and modality 2 has

M different isovalues V̈ = {l1, ..., lM} then the multimodal similarity map can be defined as an

N×M matrix MSM(i, j). Each entry of the multimodal similarity map represents the similarity

between the isosurface L̇i of modality 1 with the corresponding isovalue i and isosurface L̈ j of

modality 2 with the corresponding isovalue j.
Figures 4.4 and 4.5 show the multimodal similarity maps for the synthetic data sets introduced

in Section 4.2. Dark regions denote a high similarity in these figures. For the supplementary data

types in Figure 4.4 both data sets contain four squares at the same location. In the MSM each of

the squares is represented by a rectangular area of higher similarity. In Figure 4.4 corresponding

squares and rectangular regions are emphasized by colored frames. The band with the maximum

similarity represents the combination of isovalues k and l at which both data sets represent exactly
the same isosurface. Due to different value ranges in both data sets this band does not follow

the diagonal of the multimodal similarity map. In contrast to self similarity maps, multimodal

similarity maps are not symmetrical along the main diagonal.

In Figure 4.5 the multimodal similarity map for our complementary test data set is shown.

The regions in which both data sets contain contradictive information is clearly visible in the

similarity map. In contrast to Figure 4.4, the lower left rectangular area (red frame) in Figure 4.5

has a considerably lower similarity. Furthermore the band with maximum similarity is missing

since there are no isosurfaces for the corresponding isovalues in data set 2.

Another interesting area in the multimodal similarity map of Figure 4.5 is the rectangle in

the upper right corner (cyan frame). This rectangular area represents the similarity between the

square in one data set and the circle in the other data set. Because of the different shapes of the

objects the isosurfaces are similar but not identical. In the similarity map this can be seen by the

expanded band of maximum similarity.

4.4 Similarity-Based Volume Fusion

The conventional approach for visualizing volume data in 3D is to define a transfer function

which specifies the color and opacity of each sample based on one or several data attributes. Many

different transfer-function spaces have been proposed, each with its own set of advantages and

disadvantages. One dimensional transfer functions based on the original data values, as proposed

by Levoy [49], however, still enjoy considerable popularity due to their relative simplicity. In

particular in the context of multimodal data, additional transfer-function dimensions can result

in complex user interfaces. In this section, we describe how multimodal similarity maps can

be used as a tool to explore multimodal data. In this section, we discuss how the additional

information provided by the multimodal similarity map can guide and assist the process of

exploring multimodal data. We specifically do not want to introduce a new transfer-function

space. Instead, we aim to explore how multimodal similarity maps can be used as a visualization

and interaction tool for conventional volume visualization techniques.
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Figure 4.4: Multimodal similarity map for supplementary data types.

4.4.1 Similarity Operations

With the multimodal similarity map we gain information about the similarity of certain combina-

tions of isovalues. Based on this information we can think of different operations which can be

used to improve the multimodal visualization.

One of the simplest ways to visualize multimodal data is to perform no fusion at all, but

rather view both data sets side-by-side or blended on top of each other. This approach can be

quite effective in slice views – the user can simply synchronously browse the two volumes and

study the data. In a 3D visualization, however, this approach is typically less useful, as occlusion

severely limits the number of isosurfaces which can be depicted simultaneously. An operation

which is instantly feasible with the multimodal similarity maps is the detection of maximally
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Figure 4.5: Multimodal similarity map for contradictive complementary data.

similar isosurfaces. If we assume that a user is choosing an isovalue k for an isosurface in one

modality, the isovalue k̂ with the most similar isosurface in the second modality can be obtained

by:

k̂ = argmax
j

MSM(k, j) (4.9)

The result in Figure 4.6 shows the effect of the maximum similarity selection. The data sets

for this result originate from a dual-energy CT. Due to the different attenuation characteristics

for different energy levels, the value ranges in both data sets are different. This can be seen in

the multimodal similarity map in the center of Figure 4.6. The results in the bottom row show

isosurfaces for isovalues k1 and k2 in modality 1. The top row shows the isosurfaces for the same

isovalues in modality 2. In contrast to that, the middle row shows the isosurfaces in modality 2
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Figure 4.6: Robust isosurface selection for two different isovalues k1 and k2. The results in the
middle row show the most similar isosurfaces (L̈k̂1 , L̈k̂2). The results in the top row show the

isovalues for a naive selection of the isovalues, i.e., in both data sets the same isovalue is chosen.

for the isovalues k̂1 and k̂2 with the maximum similarity to k1 and k2. The isosurfaces for k̂1 and
k̂2 match the isosurfaces in modality 1 much better than the isosurfaces for the naive selection of

isovalues.

A second common approach for fusing two volumes is to blend the colors and opacities,

defined by two separate transfer functions, at each sample point during direct volume rendering.

The drawback of this method is that it requires the user to ensure, by tuning both transfer functions,

if the desired parts of each modality are visible. As the multimodal similarity map provides

information about the global similarity between the isosurfaces passing through a sample point, it

can be used to guide visibility. The multimodal similarity map is used in this fusion to weight

combinations of values based on their isosurface similarity.

Figure 4.7 shows the effect of the similarity weighting on the combination of CT and PET.

PET contains functional information in a low resolution. The CT is used as complementary

anatomical information. The combination of PET and CT is used to detect and localize cancer. A

common fusion technique for CT and PET simply weights the CT values with the activity value

in the PET [46]. With this method, regions of high activity are emphasized without considering

the anatomical structure. Thus the anatomical structure, such as tissue borders, is faded away.
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Figure 4.7: Effect of similarity weighting shown on a combination of a PET and a CT data set.

The similarity weighting preserves areas which represent similar structures in both modalities.

In the case of CT and PET these are tissue borders surrounding an area of high activity in the

PET scan. Therefore anatomical structures for regions of high activity can be preserved, like the

shape of the brain in Figure 4.7. In this example the similarity weighting is used to modify the

opacity α of the fused optical properties.

The similarity weighting is applied to all isovalues of both data sets. It is also possible to

narrow down the selection of isovalues which are used for the fusion. For this operation the

multimodal similarity map is not only used for the weighting but also as a guidance map to set

the selection boundaries. The ranges [klow,khigh] and [llow, lhigh] serve as selection ranges in the
modalities. Each isovalue k and l is classified to be inside or outside this range:

ȧ =

{
true klow < k < khigh
f alse else

ä =

{
true llow < l < lhigh
f alse else

(4.10)

This results in two Boolean variables ȧ and ä. These variables can be combined by logical

operations. Figure 4.8 shows the result of the application of AND, OR, and XOR on a combination

of CT and MRI data sets. In the multimodal similarity map in Figure 4.8 the ranges for the
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Figure 4.8: The similarity weighting can be narrowed to certain ranges. The logical operations

AND, OR, and XOR are used to combine the classification results of both ranges.

selections are depicted. On the right side of the similarity map the two individual modalities are

visualized as reference with their corresponding transfer functions.

For the result in Figure 4.8 the goal was to visualize the bone structure from CT together with

the brain from MRI. This has been achieved by setting the selection range for CT to isovalues

which represent bones and the selection range for MRI to isovalues which represent the brain.
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By combining the Boolean variables ȧ and ä with AND only the bones together with the brain

remain visible. As transfer functions for the fused result the unmodified transfer functions of both

modalities were used. With the method introduced in Chapter 3 it is possible to achieve similar

results for the combination of CT and MRI but it is less intuitive, since the selection is done in a

special high dimensional transfer-function space.

With the different logical operations this classification can be used in various modes. It is

also possible to depict artifacts in the modalities by the selection range. By using a combination

of the inverted Boolean variables ¬ȧ and ¬ä these artifacts can be eliminated.

4.4.2 Similarity Classifier

The simple operations discussed in the previous section allow quick exploration of multimodal

data. This approach can be useful when only few specific features are of interest. For generating

more complex visualizations, which depict multiple volumetric structures and take advantage of

the additional information provided by multiple modalities, classification in the joint data space

is necessary. The multimodal similarity map also opens up new avenues to assist in this process.

Our idea is to use a nearest neighbor classifier in similarity space to determine the optical

properties of a sample. Intuitively, instead of trying to relate the two modalities in terms of

their data values, we instead want to perform classification based on the similarity of the actual

isosurfaces these data values describe. We assume two continuous three-dimensional scalar

fields ḟ , f̈ : R3→ R which represent two co-registered input volumes. For multimodal volume

visualization, we want to assign a color and opacity to every point x ∈ R
3 in space based on the

value of these functions. Our method takes as input a set of isovalue pairs hi = (ḣi, ḧi) where ḣi,

ḧi correspond to isovalues of, respectively, ḟ and f̈ . Each pair of isovalues has an assigned color

ci, opacity αi, and optional weight wi.

For two data values k ∈ ḟ and l ∈ f̈ , we evaluate their multimodal similarity to the i-th
isovalue pair in the following manner:

ṡi(k) =MSM(k, ḧi)

s̈i(l) =MSM(ḣi, l)
(4.11)

where MSM is the multimodal similarity map. This means that ṡi is the similarity of the isosurface

k of ḟ and the isosurface ḧi of f̈ and s̈i is the similarity of the isosurface l of f̈ and the isosurface

ḣi of ḟ .
Based on the similarities ṡi and s̈i we can now define a combined measure si of similarity

between hi and the two isovalues k ∈ ḟ and l ∈ f̈ in multimodal similarity space:

si(k, l) = ṡi(k)s̈i(l) (4.12)

The rationale behind this choice is that we interpret the similarities ṡi(k), s̈i(l) as independent
probabilities of, respectively, k being similar to ḧi and l being similar to ḣi. Thus, the joint

probability of (k, l) being similar to hi is the product ṡi(k)s̈i(l). Alternatively, we could consider

ṡi and s̈i as the membership functions of two fuzzy sets and si as the membership function of their

intersection. In this case, another possible definition would be si(k, l) =min(ṡi(k), s̈i(l)) [82]. In
our experiments, we found that both approaches lead to similar results.
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Having defined a measure of closeness between two points in similarity space, we now want

each pair of isovalues hi to determine the optical properties of points that are closer to hi than to

any other isovalue pair h j (i �= j). This means a pair of data values (k, l) with k ∈ ḟ , l ∈ f̈ will
assume the color and opacity of the isovalue pair hm(k,l) which maximizes si(k, l):

m(k, l) = argmax
i

si(k, l)wi (4.13)

where wi is a weight which allows additional control over the influence of the isovalue pair hi.

During rendering, we can now evaluate this maximum for every sample location x ∈R
3 in space:

mx = m( ḟ (x), f̈ (x)) (4.14)

To visually encode the actual similarity of the sample to hmx , we additionally weight the

sample opacity based on the similarity smx . The color c(x) and opacity α(x) at the sample position

x are then simply:

c(x) = cmx

α(x) = αmxsmx

(4.15)

In practice, in order to obtain crisp boundaries, it is convenient to define an additional

threshold t which specifies the minimum similarity of a sample with any of the isovalue pairs in

order to be visible. If smx < t, the sample is considered to be fully transparent.

In volume rendering, it is common to evaluate a local illumination model using the normalized

gradient of the scalar field as the normal vector. To enable volume shading, we can combine the

gradient information of both modalities using a similarity-based weighting:

g(x) =
ṡi( ḟ (x))∇ ḟ (x)+ s̈i( f̈ (x))∇ f̈ (x)

ṡi( ḟ (x))+ s̈i( f̈ (x))
(4.16)

4.4.3 Classification Specification

The described classification is equivalent to a generalized - i.e., using non-Euclidean distances

defined by our similarity measure - Voronoi decomposition of similarity space. In the spatial

domain, the depicted volumetric structures correspond to the Voronoi cells of the chosen isovalue

pairs. We can now also visualize this classification on the similarity map itself by simply

evaluating Equation 4.13 for each location - i.e., each combination of data values - in the

similarity map and coloring the corresponding pixel accordingly.

Figures 4.9 and 4.10 show examples of our classification approach using the previously

introduced synthetic data sets. The colored regions signify the nearest neighbors, in similarity

space, of each of the white-outlined points in the corresponding color. The slightly larger points

with dark outlines have a different meaning which will be explained in the next paragraph. The

colored regions therefore constitute generalized Voronoi cells in similarity space. When depicted

on the two-dimensional similarity map, where the coordinate system is defined by isovalues,

these cells may be disconnected non-convex regions. Furthermore, based on the structure of the

similarity map, the site - i.e., the isovalue pair - which defines a region may not be contained
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Figure 4.9: Classification based on multimodal similarity for supplementary data.

within this region. While this may initially sound counter-intuitive, the following situation

exemplifies such a case. For two isosurfaces with high dissimilarity, there will likely be other

isosurfaces they are more similar to than to each other. An example of this can be seen in

Figure 4.10 where the isovalue pair which defines the orange region is located on the opposite

side of the similarity map.

To provide a means for manipulating the classification regions instead of the isovalues

themselves, we define a user-specified control point ci = (ċi, c̈i) for each isovalue pair hi, which

can be freely moved. At the beginning hi is initialized with the values of ci. When the control

point is modified, we compute the similarity-weighted centroid of the region corresponding to ci

to obtain the new value of hi:

hi =

∑
(k,l)∈R(ci)

(k, l)sm(k,l)(k, l)

∑
(k,l)∈R(ci)

sm(k,l)(k, l)
(4.17)

where R(ci) = {(k, l)|m(k, l) = i} is the similarity-space region assigned to ci. This corresponds to

one iteration of Lloyd’s algorithm [52]. Note, however, that we do not perform the full relaxation

as we want users to employ the control points as handles rather than obtaining a centroidal

decomposition of the similarity space. Instead, we only want the regions to follow their control

points. In Figures 4.9 and 4.10, the control points ci are depicted as the slightly larger points

with dark outlines, while the corresponding isovalue pairs are shown with white outlines. It can

be seen that in regions of high similarity the control points ci will be close to the corresponding

isovalue pairs hi, while in regions of low similarity they are essentially mirrored along the axis of

maximum similarity.
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Figure 4.10: Classification based on multimodal similarity for complementary data.

Based on this approach, we can now provide a simple interface for interactively classifying

multimodal data sets which takes the place of conventional transfer-function widgets. Users

can interactively add and remove control points, move them on the similarity map, and change

their colors and opacities. As shown in Figures 4.9 and 4.10, the corresponding classification

regions are overlayed over the similarity map. When moving control points they behave similar

to well-known "magic wand"-type selection tools – they snap to clusters in the similarity map.

Moving a control point will, in accordance with the structure of the similarity map, not cause

major changes of the classification result. This stands in stark contrast to conventional transfer

functions, where a slight change may cause substantial changes in the resulting image. As

mentioned in the previous section, we use a similarity threshold t for discarding samples with

low similarity in the 3D visualization. The same threshold is also used in the 2D widget. The

additional weights wi used in Equation 4.13 therefore allow to control the size of the respective

region.

An application for which our similarity-based classification approach is particularly suitable

is the study of industrial parts using dual energy CT. In such scenarios, the low energy scan

typically has high precision but is affected by severe artifacts, while the high energy scan is nearly

artifact-free but suffers from reduced precision and noise. An example is shown in Figure 4.11.

An isosurface of the low energy scan of a 400 Volt power connector is shown on the top left. It is

not possible to find an isovalue which suppresses all artifacts but leaves the surface intact. The

center image shows the high-energy scan which gives a better impression of the actual surface,

but is very noise and lacks details. We can remove the artifacts by choosing control points which

select regions of high dissimilarity and setting their opacity to zero. The blue control point

corresponds to a region with high similarity, so sample points take into account the information

of both energy levels. The result is shown on the top right of the figure – we achieve results
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comparable to those of Heinzl et al. [28] without any additional filtering. The bottom right image

shows that we can select the interior parts of the connector in an analogous manner.

A further example is shown in Figure 4.12. In this case, a dual energy CT angiography data

set of a human head is used. The similarity map, shown on the bottom right, provides good

guidance for iteratively selecting the individual tissues numbered from 1 to 7. The information

provided by the two energy levels is sufficient to allow differentiation between bone (selected in

step 3), major vessels (step 4), and minor vessels (step 5).

4.5 Implementation

The calculation of the multimodal similarity map is a preprocessing step which is implemented in

C++ and runs on the CPU. It has to be performed only once for a single multimodal data set. After

the preprocessing step the multimodal similarity map is simply represented as a two-dimensional

image. During rendering, the similarity of a combination of isovalues from the two modalities

can be retrieved by a single lookup in a 2D texture image. For the fusion the similarity of the

combination of two isovalues is also retrieved by a single lookup in a 2D texture.

The user interface for our similarity-based classification approach was implemented using the

Qt user interface toolkit. The user interface widget generates a set of isovalue pairs, colors, and

weights, which are passed to a GPU-based volume renderer implemented in GLSL as uniform

arrays. Alternatively, these values could also be stored in textures, but we found that common

numbers of isovalue pairs are sufficiently low to make the use of uniform parameters feasible.

In the shader, the similarity between the data values at the current sample point and each

isovalue pair is determined using two texture lookups (see Equations 4.11 and 4.12) and the

maximum is computed. The color and opacity of the maximally similar isovalue pair then

determines the color and opacity of the current sample, as described in Section 4.4.2. The

gradient vectors of both modalities, which are stored in a single 2-component 3D texture, are

computed by central differences, combined with Equation 4.16, and used to evaluate a local

illumination model if shading is enabled.

4.6 Discussion

As shown in our examples, multimodal surface similarity can provide a useful tool for visual

analysis of multimodal volume data. However, isosurface similarity as a measure is only useful in

cases where there is some correspondence between features and isosurfaces. For example, in data

where textures or patterns are of central importance, isosurface similarity will likely fail to provide

valuable insights. While this is a clear limitation of our approach, we want to emphasize that also

the lack of distinct structures in a multimodal similarity map provides additional information to

the user. As our approach deliberately avoids to position itself as a new technique central to the

visualization process, the lack of distinct features (like the lack of distinct features in a histogram)

simply means that little additional guidance can be provided for the particular data set. However,

in our experiments we found that even for challenging data combinations, such as CT and PET,

which exhibit little correspondence, multimodal surface similarity is still able to assist in finding

joint data value ranges which correspond to joint structures of interest.
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Data Set Red. Factor DF MI Total

Supplementary 2 28.57sec 32.97sec 61.54sec

512×512×6

Complementary 2 21.17sec 32.41sec 53.58sec

512×512×6

CT-MRI 4 4.64sec 32.86sec 37.50sec

256×256×128

CT-PET 8 3.31sec 17.06sec 20.38sec

512×512×128

Industrial DECT 16 2.12sec 12.08sec 14.20sec

425×551×895

Medical DECT 16 2.62sec 11.30sec 13.92sec

512×512×575

Table 4.1: Computation times for the multimodal similarity map as measured in an Intel Core

i7 950 CPU with a clock rate of 3.07 GHz and 12 GB RAM. DF stands for the calculation of

both distance fields. MI stands for the calculation of the mutual information. The reduction factor

indicates by which factor all dimensions (x,y,z) were reduced.

The computation time for the multimodal similarity map of two data sets is approximately

twice the computation time of a self similarity map for a data set of the same size. This is

due to the lack of symmetry. As reported by Bruckner and Möller [6], a feasible strategy to

limit the duration of this pre-processing step is to use downsampled versions of the distance

transforms (which are computed at the original data set resolution) for the mutual information

computation. The computation times for all data sets used in this chapter are given in Table 4.1.

The second column in the table lists the downsampling factor for the respective volume which is

automatically chosen to limit the computation time to approximately one minute. Even though the

reduction factors are chosen quite aggressively, a distance field is a rather redundant representation

and the downsampled version essentially acts as a shape descriptor and is not used for precise

spatial measurements. To the results of Bruckner and Möller we can also add information about

additional experiments on the effects of quantization in the value domain. We found that for

real-world data a quantization to 8 bits results in practically no structural differences in the

similarity map, as exemplified in Figure 4.13.

One limitation of our approach is that the described approach only considers data sets

consisting of two modalities. While this applies to many application scenarios, a solution

for a larger number of modalities would be desirable. A multi-dimensional similarity map of

similarities between all isovalue combinations of the respective data sets, however, would be

infeasible. A potential solution could be to only consider pair-wise similarities between the

individual modalities resulting in a matrix of multimodal similarity maps. The investigation

of whether such an approach is effective remains to be explored in future work. Furthermore,
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our technique could also be applied to investigate time-dependent data by generating a set of

similarity maps between subsequent time steps. Temporal isosurface similarity maps could help

to identify stable features and to pinpoint discontinuities.

4.7 Conclusion

In this chapter, we introduced multimodal surface similarity maps as a tool for the investigation

of multimodal volume data sets. The multimodal similarity map provides an overview of the

differences and similarities between the isosurfaces of two modalities in a compact manner.

The analysis of parameter spaces is an increasingly important topic for knowledge discovery

in scientific data. Our approach showed that similarity information can assist the classification

process without requiring the introduction of an entirely new multimodal transfer-function space.

Instead, the main contribution of this work is a new approach guiding the visual analysis of

multimodal data. Furthermore, we contributed a novel way of exploiting similarity information

for interactive classification and manipulation.
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Figure 4.11: Similarity-based fusion of a dual energy CT scan of a power connector. The low-

energy scan (top left) and the high-energy scan (top center) provide supplementary information

which can be used to remove most of their respective drawbacks (top right). The corresponding

similarity map is shown on the bottom left. The bottom right image depicts a different opacity

setting which reveals the interior parts of the object.
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Figure 4.12: Iterative control point specification for similarity-based classification of a dual-

energy CT angiography data set. The individual steps are numbered form 1 to 7.
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Summary

I
N the research field of visualization the extraction of information from raw data is a major

goal. This can be achieved through the different processing steps of the visualization pipeline

by masking parts of the data which contain no information for a certain task. Through this,

the remaining parts are enhanced and are easier to perceive by a user of a visualization system.

Information is a measurement which is hard to quantify. Which parts of the whole data

set contain more information is depending on the task which has to be performed by the user.

Through the complexity and size of data it became difficult for a user to manually interact with

all processing steps of the visualization pipeline to enhance the parts with most information.

Hence, techniques were developed which support this task by masking parts of the data with less

information automatically or semi-automatically.

For the development of such a technique it is necessary to quantify the information content

or importance of a certain part of the data set. In recent years information theory and its

tools from statistics were discovered by the visualization community for this purpose [74].

Information theory is used in many different research fields - such as signal processing [13], data

compression [27], or image processing [16] - for decades and with a high impact. In visualization

it is also likely that information theory will become more important over the next years.

In this thesis three different approaches were introduced which already employ information

theory and its statistical tools for the classification process along the visualization pipeline. The

features which are employed for the classification were chosen in a way to enhance parts of the

data which contain more information for a certain task.

Furthermore, the focus in the development of all three methods was on a user-friendly

interaction. Many transfer-function spaces lack simple interaction. Either the transfer-function

space is too complex by using too many features for the definition of the space or the employed

features for the classification are not intuitive for the user. In both cases a user needs a lot of

experience and patience to design a good transfer function.

For the methods in this thesis, transfer-function spaces were developed which simplify the

design process of a transfer function. This has been achieved by using only a few but very

expressive features and a sophisticated design of the transfer-function space. So it is possible to

provide transfer-function spaces which are simple and similar to already well-known transfer-

function spaces, even though novel features were used for the definition.

The method described in Chapter 2 discusses features for the classification with statistical

methods. The features are extracted from an adaptive local neighborhood around each sample

75
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point. With the statistical information about a local neighborhood it is possible to accurately

classify different materials in the data set, even though the data is very noisy in general.

A transfer-function space is defined based on the extracted features, i.e., the mean value and

standard deviation, of the local neighborhood. Due to the stability of the statistical properties in

respect to noise, it is possible to separately classify different materials in this transfer-function

space. In other comparable transfer-function spaces this is not possible since the extracted features

for different materials overlap each other.

The methods introduced in Chapter 3 and 4 were developed for the classification of multimodal

data. This kind of data has become more important in recent years since the acquisition techniques

got faster and less expensive.

In Chapter 3 a technique was described which employs information theory to extract features

for the classification. These features are dependent on the global distribution of the data values in

both modalities. In an intermediate step the values of both modalities are fused according to their

information content. By this approach it is possible to enhance the parts of both modalities which

contain most of the information.

For the final classification a well-known transfer-function space is used. This makes it more

intuitive for a user to define an appropriate transfer function. An additional parameter was

introduced to enhance or mask parts of the volume with high mutual information.

The approach in Chapter 4 introduced another classification technique for multimodal data.

In this approach the structures of the objects, i.e., isosurfaces, represented in the data were

used to extract features for the classification. In a multimodal similarity map the similarities of

isosurfaces of both modalities are depicted.

Based on this map a classification technique is presented which enables the extraction of

structures which are similar in both modalities. Hence it is, e.g., possible to extract salient

surfaces or suppress noise or artifacts. For this purpose the multimodal similarity map is directly

used as transfer-function space for the classification. This makes it intuitive and practical for the

user since it is not necessary to get used to a new transfer-function space.

All three approaches present new ways of classifying volumetric data based on information

theory and statistics. The results in the chapters show that the methods can perform certain

visualization tasks better in comparison to other existing approaches. Nevertheless, none of the

introduced methods is able to solve all classification issues in scientific visualization. For certain

applications and data types information theory and statistics are useful tools to enhance parts of

the data which are important for a certain task in the classification process. It might be a good

idea for future research to employ information theory for other visualization tasks which are

beyond the methods introduced in this thesis. This could lead to a lower information loss along

the information pipeline and, hence, to better conclusions about data based on visualizations.
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